
Deep Single-View 3D Objet Reconstruction with Visual Hull Embedding
(Supplementary Material)

Abstract

In this supplementary material, we provide: 1) more dis-
cussions pertaining to the difference between our method
and previous methods using pose and silhouette, 2) our de-
tailed network structure, 3) more results on the PASCAL 3D+
dataset, and 4) details of the experiment analyzing the result
sensitivity with respect to focal length and visual hull distor-
tion.

Difference from prior art using pose and
silhouette

As mentioned in the main paper, our method differs from
previous methods that use object pose and silhouette to su-
pervise 3D shape prediction (Yan et al. 2016; Tulsiani et al.
2017; Gwak et al. 2017; Zhu et al. 2017; Wu et al. 2017;
Tulsiani, Efros, and Malik 2018). As illustrated in Fig. 1
left, these methods project the predicted shape onto the im-
age plane using ground-truth or estimated (Zhu et al. 2017;
Tulsiani, Efros, and Malik 2018) object pose, and use the
discrepancy between the projected and ground-truth (or es-
timated (Wu et al. 2017)) silhouettes (or other observations
such as depth map (Tulsiani et al. 2017; Wu et al. 2017))
as a loss to train or finetune the network. In contrast, we
explicitly embed inside of the network a single-view visual
hull and use convolutions to process it for shape refinement.
Additionally, our visual hull construction is actually an in-
verse process of the shape-to-image projection scheme used
by these methods. But note that these two approaches are or-
thogonal and we can also use the projection loss to train or
finetune our network.

Detailed Network Structure
Figure 2 presents a detailed structure of our 3D reconstruc-
tion network which is omitted in the main paper due to space
limitation. The four sub-networks V-Net, P-Net, S-Net and
R-Net are primarily based on 2D and 3D convolutional lay-
ers, where the V-Net is adapted from (Choy et al. 2016). The
SPVH layer connects these sub-networks.

Pose & Silhouette for Supervision Pose & Silhouette for Prediction (Ours)

Figure 1: Difference between methods using object pose and
silhouette to supervise shape learning (left) and our method
(right). Orange color indicates ground truth. Solid lines rep-
resent forward computation during inference and dashed
lines indicate supervision signals in the training stage.

More Results on PASCAL 3D+ Dataset
More implementation details
To train (finetune) our method on this dataset, we simply
set the focal length to be 2000 for all images since no focal
length is provided. With this fixed focal length, we recom-
puted the object distances using the image keypoint annota-
tions and the CAD models through reprojection error min-
imization. We only recomputed the distances labels; other
pose labels including azimuth, elevation and in-plane rota-
tions as well as the object centers on the image were kept
the same as the original dataset. We use the silhouettes ob-
tained by projecting the pseudo ground-truth shapes to train
the S-Net.

Discussion of the dataset
The PASCAL 3D+ dataset (Xiang, Mottaghi, and Savarese
2014) was originally proposed for 3D object detection. In
this dataset, up to 10 CAD models are used to annotate 300
to 2,000 images in each category and serve as the pseudo
ground truth shape. As a result, some images are associated
with inaccurate 3D structures, as shown in Fig. 3. The sil-
houette and pose labels are consequently also noisy, making
it very challenging for our method.

Failure cases
Some failure cases of our method are shown in Fig. 4. Note
that “failure case” refers to the examples where the IoU
metrics were lowered after the refinement process. Figure 4
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Figure 2: Detailed network structure. The rectangles represent the network layers (conv, deconv/fractionally-strided-conv, fc,
etc.), layer blocks (right column) as well as inputs and outputs. The numbers between the layers indicate feature map sizes. All
max-pooling layers decrease spacial resolution of feature map by factor of 2. Other spatial resolution changes are due to conv
and deconv layers with strides larger than 1 (e.g., stride 2 for shrinking/enlarging resolution by 2 in conv/deconv layers). The
whole network runs at 55 fps on an NVIDIA M40 GPU (∼18 milliseconds per image).

Figure 3: Randomly selected images that are annotated in the PASCAL 3D+ dataset. The images are superposed with the
silhouettes obtained by projecting the pseudo ground-truth shapes. In this dataset, each category of the four only contains up
to 10 CAD models used to annotate 300 to 2,000 images. As a consequence, some images are apparently associated with
inaccurate 3D structures (see the last few columns). Moreover, the pseudo ground-truth silhouettes and poses we used to train
our S-Net and P-Net are also noisy for many images, making it very challenging for our method. (Best with on screen with
zoom-in)



Input
Image

Pseudo 
GT

Estimated
Silhouette

Visual
Hull

Coarse
Shape

Refined 
Shape

Pseudo
GT

IoU 0.429 IoU 0.581 IoU 0.271

IoU 0.538 IoU 0.474 IoU 0.086

IoU 0.851 IoU 0.800 IoU 0.626

IoU 0.851 IoU 0.800 IoU 0.626

Figure 4: Failure cases on the PASCAL 3D+ dataset where
the refinement led to lower IoU. Blue box: failure due to er-
roneous pose estimation (the rotation error is over 70 degrees
for the car). Orange box: failure due to inaccurate silhouette
estimates. Green box: due to the inconsistency between the
pseudo ground-truth shapes and input images, our refined
results, despite appearing much more realistic and consis-
tent with the input images, have larger IoU values. As such,
these examples are not true failure cases for our method.
(Best view on screen with zoom-in)

shows that when the pseudo ground-truth shapes are clearly
inconsistent with the input images (last two examples), the
refined shapes have larger IoU values despite being much
more realistic and consistent with the input images com-
pared to the coarse shapes. As such, these examples are not
true failure cases for our method, and they demonstrate the
limitation of using this dataset for evaluating 3D reconstruc-
tion results. Apart from this dataset issue, our visual hull
based refinement typically fails due to inaccurate pose and
silhouette estimates, as shown in the first two examples of
Figure 4.

Sensitivity w.r.t. Focal Length
As mentioned in the main paper, we designed an experiment
to test our method under wrong focal lengths with distorted
visual hulls. Specifically, we multiply the used focal length
as well as the output tZ (i.e., the depth of object center)
from P-Net by a scale factor. This way, the constructed vi-
sual hulls are subject to certain degrees of weak-perspective
distortion. We directly re-run the network without finetun-
ing. Table 1 shows that for ShapeNet objects the focal length
changes only lead to minor IoU drops and the results are
still much better than the baseline. For real images, there is
even no obvious performance drop with larger focal lengths.
These results indicate that our method still works well with
some weak-perspective approximations and the results are
insensitive to the real focal length of the input images espe-
cially for distant objects (such as those in Pascal 3D+).

Table 1: Results with different focal lengths
Mean IoU

Sh
ap

eN
et

Before Refine. 0.631
After Refine. 0.680
0.8× focal & tZ 0.675
1.2× focal & tZ 0.676
1.5× focal & tZ 0.672

Pa
sc

al
3D

+ Before Refine. 0.5518
After Refine. 0.5872
0.5× focal & tZ 0.5866
1.5× focal & tZ 0.5872
2.0× focal & tZ 0.5873
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