Dense, Accurate Optical Flow Estimation with Piecewise Parametric Model (Supplementary Material)

Jiaolong Yang^{1,2} and Hongdong Li^{2,3}

¹Beijing Lab of Intelligent Information Technology, Beijing Institute of Technology ²Research School of Engineering, The Australian National University (ANU) and NICTA ³ARC Centre of Excellence for Robotic Vision (ACRV)

Abstract

In this supplementary material, we provide the details of the initialization algorithm, as well as more experimental results compared to state-of-the-art methods on the public benchmarks.

1. Initialization Algorithm

In this work, a simple strategy is used to generate candidate homography proposals and an initial labelling. We first compute an initial motion field via PatchMatch [1], then we use Direct Linear Transform (DLT) [3] to fit homographies for small local regions, and grow the regions to consistent neighbouring pixels for initial labelling. See Algorithm 3 for the details. In further we would like to test more initialization strategies.

2. More Results

2.1. Results on KITTI

Figure 1 shows the quantitative results on the the *test* set of the KITTI benchmark at the time of writing. Complete results can be found at the official webpage: http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow.

2.2. Results on Middlebury

Figure 2 shows the quantitative method evaluation results on the the *test* set of the Middlebury benchmark at the time of writing. Complete results can be found at the official webpage: http://vision.middlebury.edu/ flow/eval/results/results-el.php. Note that, all the methods have sub-pixel accuracy, and a very small difference in one sequence may lead to a large difference in ranking. Algorithm 3: Homography proposal generation and initial labelling

- 1 Initialize a dense motion field by *e.g.* [1];
- 2 Initialize a label map with all pixels unlabelled;
- $l \leftarrow 0;$
- 4 while unlabelled pixels exist do
- 5 Pick out an unlabelled pixel x;
- 6 Fit a homography H_l with points in a small (*e.g.* 5×5) window W_x centered as x;
- 7 Label unlabelled pixels in $W_{\mathbf{x}}$ with l and push them into queue Q;
- 8 while Q is not empty do
- 9 Pop-out a pixel \mathbf{p} from Q;
- 10 **foreach** q *as* p's unlabelled neighbour **do**
 - **if** \mathbf{q} 's motion fits \mathbf{H}_l **then**
 - Label \mathbf{q} with l and push it into Q;
- 13 $l \leftarrow l+1;$

11

12

- 14 if $l > L_{max}$ (e.g., 1000) then
- 15 Sort the labels according to their labelling areas;
- Set all pixels of the $l L_{max}$ labels with smallest areas as unlabelled, then label each of them with its nearest label on the image.

Figure 3 compares the proposed method with method of [2] which uses translation and similarity models extracted from nearest neighbour fields. Visually inspected, our method yields smoother, and more accurate optical flow estimates.

We also show in Figure 4 the overlay of the reference frame and our optical flow estimation result on the on "Beanbags" and "DogDance" sequences.

2.3. Results on Sintel

Figure 5 shows the quantitative method evaluation results on the *test* set of the Sintel benchmark at the time of writing. Complete results can be found at the official webpage: http://sintel.is.tue.mpg.de/results.

References

- C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman. PatchMatch: A randomized correspondence algorithm for structural image editing. *ACM Transactions on Graphics* (*TOG*), 28(3):24, 2009.
- [2] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2443–2450, 2013. 1, 2
- [3] R. Hartley and A. Zisserman. *Multiple view geometry in computer vision (2nd edition)*. Cambridge university press, 2005.
- [4] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: Edge-preserving interpolation of correspondences for optical flow. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2015. 5

[2] (w/o refinement) Ours (w/o refinement) Ground truth

Figure 3: Qualitative comparison of [2] which uses global translation and similarity models (images reproduced from [2]), and our method. The flow fields shown here from both methods are without the refinement process.

Input images

Our flow

Figure 4: Results of our method on the "BeanBags" and "DogDance" sequences of Middlebury dataset.

Rank	Method	Setting	Code	Out-Noc	Out-All	Avg-Noc	Avg-All	Density	Runtime	Environment	Compare
1	<u>VC-SF</u>	ďð 🗗		2.72 %	4.84 %	0.8 px	1.3 px	100.00 %	300 s	1 core @ 2.5 Ghz (Matlab + C/C++)	
C. Voge	I, S. Roth and K. Sc	hindler: <u>Vie</u>	w-Consis	tent 3D Scen	E C 4 9	nation over M	ultiple Fran	nes. Proceedi	ngs of European	Conference on Computer Vision. Lecture Notes in, Compute	r Science 2014.
K. Yama	iguchi, D. McAlleste	r and R. Urt	tasun: <u>Ef</u> i	ficient Joint	Segmentatio	n, Occlusion	Labeling, St	tereo and Flov	v Estimation. EC	CV 2014.	
3	<u>SPS-Fl</u>	※		3.38 %	10.06 %	0.9 px	2.9 px	100.00 %	11 s	1 core @ 3.5 Ghz (C/C++)	
K. Yama	CVPR 1390	r and R. Urt	tasun: <u>Eff</u>	3.47 %	6.34 %	1.0 px	1.5 px	100.00 %	<u>v Estimation</u> . ECC 50 min	CV 2014. 1 core @ 3.0 Ghz (Matlab + C/C++)	
5	PR-Sf+E	ďð		3.57 %	7.07 %	0.9 px	1.6 px	100.00 %	200 s	4 cores @ 3.0 Ghz (Matlab + C/C++)	
C. Voge	I, S. Roth and K. Sc	hindler: <u>Pie</u>	<u>cewise R</u>	igid Scene Fla	<u>w</u> . Internat	tional Conference	ence on Con	puter Vision	(ICCV) 2013.		_
6	PCBP-Flow	迷 and R List	asun: Ro	3.64 %	8.28 %	0.9 px	2.2 px	100.00 %	3 min	4 cores @ 2.5 Ghz (Matlab + C/C++)	
7	PR-Sceneflow			3.76 %	7.39 %	1.2 px	2.8 DX	100.00 %	150 sec	4 core @ 3.0 Ghz (Matlab + C/C++)	
C. Voge	l, S. Roth and K. Sc	hindler: <u>Pie</u>	: cewise Ri	igid Scene Flo	<u>w</u> . Internat	tional Conference	ence on Con	nputer Vision	(ICCV) 2013.	1	
8	MotionSLIC	X		3.91 %	10.56 %	0.9 px	2.7 px	100.00 %	11 s	1 core @ 3.0 Ghz (C/C++)	
K. Yama	iguchi, D. McAlleste	r and R. Urt	tasun: <u>Ro</u>	bust Monocu	ar Epipolar	Flow Estimat	tion. CVPR 2	2013.			
9	PPR-Flow			5.76 %	10.57 %	1.3 px	2.9 px	100.00 %	800 s	1 core @ 3.5 Ghz (Matlab + C/C++)	
Anonym 10	NI TGV-SC			5.92 %	11 96 %	1.6 px	3.8 px	100.00 %	16 s	GPU @ 2.5 Gbz (Matlab + C/C++)	
R. Ranf	tl, K. Bredies and T	. Pock: <u>Non-</u>	Local To	tal Generaliz	ed Variatio	n for Optical	Flow Estimation	ation. Proceed	dings of the 13th	European Conference on Computer Vision 2014.	
11	DDS-DF			6.03 %	13.08 %	1.6 px	4.2 px	100.00 %	1 min	1 core @ 2.5 Ghz (Matlab + C/C++)	
D. Wei,	C. Liu and W. Free	man: <u>A Data</u>	a-driven	Regularizatio	n Model for	Stereo and I	Flow. 3DTV-	Conference,	2014 Internation	al Conference on 2014.	
12 J. Brau	IGVZADCSIFT x-Zin, R. Dupont and	d A. Bartoli	: A Gener	6.20 %	15.15 % ee Matching	1.5 px Framework	4.5 px	100.00 % Direct and Fe	12s ature-based Cos	GPU @ 2.4 Ghz (C/C++) sts. International Conference on Computer Vision (ICCV) 201	3.
13	AnvFlow			6.37 %	15.80 %	1.5 px	4.3 DX	100.00 %	15 s	GPU @ 2.5 Ghz (C/C++)	
Anonym	ous submission	.!								۶	
14	BTF-ILLUM			6.52 %	11.03 %	1.5 px	2.8 px	100.00 %	80 seconds	1 core @ 3.0 Ghz (C/C++)	
0. Dem	CRT-TGV	z, J. Weicke	ert and A	6 71 %	12 09 %	2 0 px	3 9 DX	100.00 %	10.5 min	1 core @ 3.0 Gbz (C/C++)	/ 2014 2014.
Anonym	ous submission		1			Lio pr	, on pr				
16	Data-Flow			7.11 %	14.57 %	1.9 px	5.5 px	100.00 %	3 min	2 cores @ 2.5 Ghz (Matlab + C/C++)	
C. Voge	I, S. Roth and K. Sc	hindler: <u>An I</u>	Evaluatio	n of Data Cos	ts for Opti	<u>cal Flow</u> . Ger	man Confer	ence on Patte	rn Recognition (GCPR) 2013.	
1/ P Wein	DeepFlow zaepfel L Revaud	7 Harchao	uri and C	7.22 % Schmid: De	17.79 %	1.5 px	5.8 px	100.00 %	1/s	1 core @ 3.6Ghz (Python + C/C++)	
18	EpicFlow			7.88 %	17.08 %	1.5 px	3.8 px	100.00 %	15 s	1 core @ 3.6 Ghz (C/C++)	
Anonym 10	ous submission		1	7 01 %	10 00 9	2.0	61	100.00 %	190 -	2 @ 2.0 Ch- (M-H-h)	
H. Rash	wan, M. Mohamed,	M. Garcia,	B. Merts	ching and D.	Puig: Illumi	2.0 px	t Optical Flo	W Model Base	160 S d on Histogram	of Oriented Gradients. German Conference on Pattern Reco	ognition 2013 .
20	MLDP-OF			8.67 %	18.78 %	2.4 px	6.7 px	100.00 %	160 s	2 cores @ 2.5 Ghz (Matlab)	
M. Moh	amed, H. Rashwan,	B. Mertschi	ng, M. G	arcia and D.	Puig: Illumi	nation-Robus	t Optical Flo	ow Using Local	l Directional Pat	tern . IEEE Transactions on Circuits and Systems for Video T	Fechnology 2014 .
21 Anonym	DescFlow			8.76 %	19.45 %	2.1 px	5.7 px	100.00 %	9.0 s	GPU @ 2.5 Ghz (C/C++)	
22	SparseFlow		<u>code</u>	9.09 %	19.32 %	2.6 px	7.6 px	100.00 %	10 s	1 core @ 3.5 Ghz (Matlab + C/C++)	
R. Timo	fte and L. Gool: Spa	arseFlow: Sp	oarse Mat	tching for Sm	all to Large	Displacemen	t Optical Flo	<u>. WACV 20</u>)15 .		
23 0 Dem	CRTflow etz D. Hafner and	Weickert	• The Cor	9.43 %	18.72 %	2.7 px	6.5 px	100.00 %	18 s Ilv Invariant Mat	GPU @ 1.0 Ghz (C/C++)	e 2013 (BMVC) 2013
24	<u>C++</u>		code	10.04 %	20.26 %	2.6 px	7.1 px	100.00 %	8.5 min	1 core @ 3.0 Ghz (Matlab)	
D. Sun,	5. Roth and M. Blac	k: <u>A Quanti</u>	tative An	alysis of Cur	rent Practio	es in Optical	Flow Estimation	ation and The	Principles Behin	id Them. 2014.	
25	TF+OFM	æ	code	10.22 %	18.46 %	2.0 px	5.0 px	100.00 %	350 s	1 cores @ 2.5 Ghz (Matlab + C/C++)	
к. келл 26	C+NI	Uptical Flow	code	10.49 %	20.64 %	2.8 DX	7.2 DX	100.00 %	14.8 min	1 core @ 3.0 Gbz (Matlab)	
D. Sun,	5. Roth and M. Blac	i k: <u>A Quantii</u>	tative An	alysis of Curi	rent Practic	es in Optical	Flow Estimation	ation and The	Principles Behin	Id Them. 2014.	
27	<u>NNF-Local</u>			10.68 %	21.09 %	2.7 px	7.4 px	100.00 %	1073 s	1 core @ 2.5 Ghz (Matlab)	
28	fSGM			10.74 %	22.66 %	3.2 px	12.2 px	100.00 %	60 s	1 core @ 2.4 Ghz (C/C++)	
S. Herm	TGV2CENCUS	<u>lierarchical</u>	Scan Lin	e Dynamic P	19 27 9	for Optical	Flow using S	emi-Global Ma	atching. ACCV W	(orkshops 2012.	
M. Wer	IGVZCENSUS lberger: Convex Apj	i proaches foi	<u>r High Pe</u>	erformance V	ideo Proce	ssing. 2012.	0.0 PX	100.00 %	4 5	Gru+Cru @ 3.0 Onz (MattaD + C/C++)	
R. Ranf	tl, S. Gehrig, T. Poo	k and H. Bi	schof: Pu	ushing the Lin	nits of Stere	eo Using Vari	ational Ster	eo Estimation	. IV 2012.	1 core @ 2 0 Cb- (McMab)	
50 D. Sun	C+INL-TAST S. Roth and M. Blac	k: A Ouantii	code	12.36 % alvsis of Curi	22.20 %	5.2 PX es in Optical	7.7 pX Flow Estimation	100.00 % ation and The	2.7 MIN Principles Behin	i core @ 3.0 GHZ (Matlab)	

Figure 1: Method evaluation on KITTI benchmark with the default 3-pixel error threshold (captured on 21-Nov-2014). Our method "PPR-Flow" (new name "PH-Flow" now) ranks 1st among all pure optical flow methods without stereo information or epipolar constraint.

	Average		Army	Mequon	Schefflera	Wooden	Grove	Urban	Yosemite	Teddy
	endpoint		(Hidden texture)	(Hidden texture)	(Hidden texture)	(Hidden texture)	(Synthetic)	(Synthetic)	(Synthetic)	(Stereo)
	error	avg.	<u>GT im0 im1</u>	<u>GT</u> im0 im1	GT im0 im1	GT im0 im1	GT im0 im1	GT im0 im1	GT im0 im1	GT im0 im1
		rank	all disc untext	all disc untext	all disc unto	xt all disc untext	all disc untext	all disc untext	all disc untext	all disc untext
	NNF-Local [87]	2.7	0.07 1 0.20 2 0.05 1	0.151 0.513 0.125	0.18 1 0.37 1 0.1	1 0.102 0.493 0.062	0.411 0.611 0.212	0.232 0.662 0.191	0.104 0.129 0.17 12	0.341 0.804 0.232
	OFLAF [77]	7.0	0.087 0.213 0.065	0.165 0.534 0.125	0.192 0.371 0.1	1 0 147 0 77 23 0 07 4	0.514 0.785 0.253	0.316 0.763 0.258	0.11 11 0.12 0.21 31	0.427 0.782 0.6312
	MDD Elow 2 (69)	0.0	0.027 0.215 0.005	0.10 0 0.00 0.120	0.20 0.40 0.41	0.14 0.15 0.00 0.00 0.00 0	0.62 (0.02 (0.42 (0.42))	0.262 0.762 0.226	0.11 1 0.125 0.215	0.22 0.70 0.44
	MDP-FI0W2 [66]	0.2	0.007 0.213 0.0714	0.151 0.461 0.111	0.204 0.404 0.1	1 <u>0.15</u> 18 0.0029 0.0010	0.0316 0.9316 0.4317	<u>0.26</u> 3 0.763 0.236	0.11 11 0.129 0.1712	0.303 0.793 0.444
	NN-field [71]	9.0	0.087 0.2214 0.051	0.17 0.557 0.13 10	0.192 0.393 0.1	6 0.09 1 0.482 0.051	0.41 1 0.61 1 0.20 1	0.52 48 0.64 1 0.26 11	0.13 32 0.13 27 0.20 25	0.35 2 0.83 5 0.21 1
	ComponentFusion [96]	10.6	0.07 1 0.21 3 0.05 1	0.16 0.557 0.12 5	0.204 0.447 0.1	6 <u>0.11</u> 3 0.656 0.062	0.71 29 1.07 34 0.53 31	0.32 8 1.06 22 0.28 14	0.11 11 0.13 27 0.15 7	0.41 6 0.88 10 0.54 5
	TC/T-Flow [76]	15.8	0.07 1 0.21 3 0.05 1	0.19 15 0.68 28 0.12 5	0.28 20 0.66 25 0.1	1 0.147 0.86 38 0.074	0.67 26 0.98 25 0.49 26	0.22 1 0.827 0.191	0.11 11 0.11 1 0.30 70	0.50 23 1.02 26 0.64 14
	WI IE-Flow [93]	15.8	0.087 0.213 0.065	0 18 10 0 55 7 0 15 20	0.25 15 0.56 16 0.17	13 0 147 0 687 0 0810	0.61 14 0.91 15 0.41 15	0 43 25 0 96 13 0 29 20	0 13 32 0 129 0 21 31	0.51 28 1.03 29 0.72 28
	NNE EAC [104]	16.9	0.00 0.22 4 0.07 4	0.17 - 0.53 + 0.13 +0	0.230 0.49 0 0.1	0 16 m 0 80 m 0 00 m	0.60 0.80 0.40	0.38 + 0.78 = 0.28 +	0.12 0.12 0.18 17	0.57 - 1.24 - 0.69 -
	NNF-EAC [104]	10.0	0.09 29 0.22 14 0.07 14	<u>0.17</u> 7 0.554 0.1510	0.239 0.4910 0.1	0.00 20 0.00 20 0.00 20 0.00 20	<u>0.00</u> 11 0.09 11 0.40 13	0.30 16 0.705 0.2014	0.12 22 0.129 0.1017	0.57 37 1.24 41 0.09 23
	Layers++ [37]	17.3	0.087 0.213 0.0714	0.19 15 0.56 10 0.17 27	0.204 0.404 0.18	19 0.13 6 0.584 0.074	0.48 3 0.703 0.336	0.47 36 1.01 16 0.33 37	0.15 54 0.14 49 0.24 43	0.46 13 0.88 10 0.72 28
	LME [70]	17.8	0.08 7 0.22 14 0.06 5	0.15 1 0.49 2 0.11 1	0.30 28 0.64 20 0.31	71 0.15 18 0.78 25 0.09 2	0.66 22 0.96 21 0.53 31	0.33 9 1.18 34 0.28 14	0.12 22 0.12 9 0.18 17	0.44 9 0.91 12 0.61 10
	IROF++ [58]	18.4	0.087 0.23 20 0.07 14	0.21 27 0.68 28 0.17 27	0.28 20 0.63 19 0.19	31 0.15 18 0.73 19 0.09 2	0.60 11 0.89 11 0.42 16	0.43 25 1.08 25 0.31 27	0.10 4 0.129 0.124	0.47 15 0.98 19 0.68 22
	nl avers (57)	18.6	0.07 1 0.19 1 0.065	0.2233_0.5913_0.1946	0.25 15 0.54 13 0.20	40 0 15 18 0 84 35 0 08 10	0.535 0.785 0.348	0.44 20 0.84 8 0.30 24	0 13 32 0 13 22 0 20 25	0.47 15 0.97 18 0.67 20
	EC 2Levers EE 1741	20.5	0.08 0.01 0.07	0.24 - 0.70 - 0.47 -	0.20 0 40 0 40		0.52 0.77 0.27	0.40 - 4.02 - 0.22 -	0.46 - 0.42 - 0.20 -	0.440 0.970 0.64
	TC-2Layers-IT [74]	20.5	0.007 0.213 0.07 14	0.21 2/ 0.70 33 0.17 2/	0.20 0.40 0.10	19 0.15 18 0.70 22 0.08 10	0.00 0.014 0.019	0.45 42 1.02 1/ 0.33 5/	0.10 65 0.132/ 0.2365	0.449 0.079 0.0414
	PPR-FIOW [102]	20.5	0.087 0.2427 0.0714	0.21 27 0.68 28 0.17 27	0.239 0.4910 0.19	31 0.16 30 0.83 33 0.09 2	0.567 0.837 0.3810	0.30 5 0.816 0.247	0.15 54 0.13 27 0.30 70	0.438 0.856 0.6618
	Correlation Flow [75]	21.0	0.09 29 0.23 20 0.07 14	0.17 0.58 12 0.11 1	0.43 49 0.99 51 0.1	6 <u>0.11</u> 3 0.47 1 0.0810	0.75 35 1.08 35 0.56 36	0.41 21 0.92 11 0.30 24	0.14 42 0.13 27 0.27 56	0.40 5 0.85 6 0.42 3
	AGIF+OF [85]	22.1	0.087 0.2214 0.0714	0.23 45 0.73 37 0.18 37	0.28 20 0.66 25 0.18	19 0.14 7 0.70 10 0.08 10	0.57 8 0.85 8 0.38 10	0.47 36 0.97 14 0.31 27	0.13 32 0.13 27 0.22 36	0.51 28 0.99 22 0.74 37
	FESL [72]	24.0	0.087 0.213 0.07 14	0.25 55 0.75 43 0.19 46	0.27 17 0.61 17 0.18	19 0.147 0.687 0.0810	0.61 14 0.89 11 0.44 18	0.47 35 1.03 20 0.32 32	0.14 42 0.15 59 0.25 48	0.50 23 0.96 16 0.63 12
	Classic+CPE (83)	24.0	0.087 0.23 0 0.07 4	0.22 ** 0.73 ** 0.17 **	0.30 22 0.70 22 0.15	10 0.14 7 0.72 10 0.08 10	0.63 16 0.93 16 0.45 20	0.51 / 1.03 m 0.32 m	0.14 (2. 0.12 0. 0.30 70	0.48+7 0.93+2 0.72 28
	ALD Flow (00)	24.0	0.07 0.01 0.00	0.40 0.04 0.40	0.00 - 0.70 - 0.1		0.70	0.00 + 1.00 - 0.02 -	0.17 12 0.12 0.00 10	0.54 4.40 0.72
	ALD-FIOW [66]	24.1	0.07 1 0.213 0.065	0.19 15 0.64 22 0.13 10	0.30 28 0.73 31 0.1	6 <u>0.17</u> 37 0.9250 0.074	0.78 38 1.14 39 0.59 39	0.339 1.3042 0.214	0.12 22 0.12 9 0.28 60	0.5433 1.1939 0.7333
ļ	TC-Flow [46]	24.4	0.07 1 0.21 3 0.06 5	0.15 1 0.59 13 0.11 1	0.31 33 0.78 36 0.1	1 0.16 30 0.86 38 0.08 10	0.75 35 1.11 37 0.54 33	0.42 23 1.40 51 0.25 8	0.11 11 0.12 9 0.29 65	0.62 42 1.35 43 0.93 57
	COFM [59]	24.5	0.08 7 0.26 38 0.06 5	0.18 10 0.62 18 0.14 16	0.30 28 0.74 33 0.19	31 0.15 18 0.86 38 0.07 4	0.79 39 1.14 39 0.74 56	0.35 14 0.87 10 0.28 14	0.14 42 0.12 9 0.28 60	0.49 19 0.94 14 0.71 27
ļ	Efficient-NL [60]	24.8	0.087 0.22 14 0.06 5	0.21 27 0.67 26 0.17 27	0.31 33 0.73 31 0.18	19 0.14 7 0.71 15 0.08 10	0.59 10 0.88 10 0.39 12	1.30 79 1.35 46 0.67 74	0.14 42 0.13 27 0.26 50	0.45 11 0.856 0.557
ļ	Sparse-NonSparse [56]	24.9	0.087 0.2320 0.0714	0.2233 0.7337 0.1837	0.28 20 0.64 20 0.19	31 0.147 0.71 15 0.08 1	0.67 26 0.99 27 0.48 22	0.4942 1.0622 0.3232	0.1442 0.11 0.28 00	0.49 19 0.98 19 0.73 33
ļ	1 CM (201	26.5	0.087 0.22 0.07	0.22 22 0.72 22 0.40	0.28 0 0.64 0 0.14	21 0 14 7 0 70 40 0 00	0.66 m 0.07 m 0.40 m	0.50 4 1.05 2 0.32 32	0.15 4 0.120 0.200	0.50 0 0.00 0 0.73
ļ	Low [99]	20.5	0.00/ 0.2320 0.0/14	<u>0.22</u> 35 0.73 37 0.18 37	0.20 20 0.04 20 0.15	ar <u>0.14</u> 7 0.7010 0.092	0.00 22 0.97 23 0.48 23	0.50 44 1.00 22 0.33 37	0.10 54 0.129 0.2965	0.00 23 0.09 22 0.73 33
	Ramp [62]	27.0	0.087 0.2427 0.0714	0.21 27 0.72 35 0.18 37	0.27 17 0.62 18 0.19	31 0.15 18 0.71 15 0.09 2	0.66 22 0.97 23 0.49 26	0.51 46 1.09 26 0.34 43	0.15 54 0.12 9 0.30 70	0.48 17 0.96 16 0.72 28
	Classic+NL [31]	28.9	0.08 7 0.23 20 0.07 14	0.22 33 0.74 41 0.18 37	0.29 25 0.65 24 0.19	31 0.15 18 0.73 19 0.09 2	0.64 19 0.93 16 0.47 21	0.52 48 1.12 29 0.33 37	0.16 65 0.13 27 0.29 65	0.49 19 0.98 19 0.74 37
	TV-L1-MCT [64]	29.3	0.08 7 0.23 20 0.07 14	0.24 50 0.77 46 0.19 46	0.32 36 0.76 35 0.19	31 0.147 0.699 0.092	0.72 31 1.03 28 0.60 40	0.54 51 1.10 27 0.35 46	0.11 11 0.12 9 0.20 25	0.54 33 1.04 31 0.84 48
	PME (73)	30.0	0.09 29 0.25 32 0.07 14	0 19 15 0 60 16 0 14 16	0 23 0 46 0 17	13 0 17 37 0 87 42 0 09 23	0.589 0.869 0.264	0.8255 1.1732 0.5454	0.21 89 0.22 94 0.36 85	0.394 0.751 0.599
	EMOE (941	31.0	0.087 0.224 0.074	0.24 m 0.76 u 0.19 m	0.24 0 0.54 0 0.15	10 0.14 2 0.70 10 0.08 1	0.64 10 0.94 00 0.44 10	1 10 75 1 12 00 0 65 75	0.15 4 0.13 47 0.32 40	0.58 20 1.16 27 0.70 25
	1 MOT [34]	31.0	0.007 0.22 14 0.07 14	0.24 50 0.70 44 0.19 46	0.24 12 0.34 13 0.10	19 0.14 0.70 10 0.00 10	0.04 19 0.34 20 0.44 10	<u>1.13</u> /5 1.12.23 0.03/5	0.13 54 0.13 27 0.32 80	0.50 39 1.10 37 0.70 28
	IROF-1V [53]	32.3	0.09 29 0.25 32 0.08 38	0.2233 0.7746 0.1946	0.30 28 0.70 28 0.19	31 0.18 44 0.93 53 0.11 4	0.73 33 1.04 30 0.56 36	0.44 29 1.69 70 0.31 27	0.093 0.111 0.124	0.50 23 1.08 33 0.73 33
	MDP-Flow [26]	33.5	0.09 29 0.25 32 0.08 38	0.19 15 0.54 6 0.18 37	0.24 12 0.55 15 0.20	40 0.16 30 0.91 47 0.09 23	0.74 34 1.06 33 0.61 42	0.46 33 1.02 17 0.35 46	0.12 22 0.14 49 0.17 12	0.78 64 1.68 67 0.97 62
	2DHMM-SAS [92]	34.5	0.087 0.24 27 0.07 14	0.23 45 0.78 49 0.17 27	0.42 48 0.90 43 0.22	50 0.15 18 0.75 21 0.09 2	0.65 21 0.96 21 0.48 23	0.56 54 1.13 31 0.34 43	0.15 54 0.13 27 0.30 70	0.56 36 1.13 35 0.79 41
	MLDP_OF [89]	34.8	0.11 48 0.28 47 0.09 52	0.18 10 0.56 10 0.13 10	0.34 38 0.79 38 0.17	13 0.16 30 0.82 32 0.09 2	0.72 31 1.05 32 0.50 28	0.34 12 1.10 27 0.27 13	0.1877 0.15 59 0.44 92	0.76 57 1.09 34 0.69 23
	EPPM w/o HM [88]	35.0	0.11.48 0.30.58 0.08.38	0.19 15 0.67 25 0.13 10	0.29 25 0.71 20 0.12	13 0 17 37 0 78 35 0 11 4	0.63 16 0.93 16 0.33 6	0.60 57 1.35 /6 0.40 56	0 19 20 0 15 50 0 45 03	0.45 11 0.94 14 0.64 14
	Crem W/o Tim [00]	05.7	0.00	0.13 15 0.07 25 0.13 10	0.20 20 0.71 30 0.11	13 0.17 37 0.70 28 0.11 4		0.00 57 1.00 40 0.40 55	0.13 0 0.13 3 0.43 3	0.50 - 4.40 - 0.07 -
	Sparse Occlusion [54]	35.7	0.09 29 0.24 27 0.08 38	0.2233 0.6319 0.1946	0.3843 0.9144 0.18	19 <u>0.17</u> 37 0.85 37 0.09 2	0.7535 1.0936 0.4721	0.34 12 1.00 15 0.26 11	0.2291 0.2294 0.2860	0.53 32 1.13 35 0.67 20
	OFH [38]	35.8	0.10 41 0.25 32 0.09 52	0.19 15 0.69 31 0.14 16	0.43 49 1.02 55 0.17	13 0.17 37 1.08 60 0.08 10	0.87 49 1.25 47 0.73 53	0.43 25 1.69 70 0.32 32	0.10 4 0.13 27 0.18 17	0.59 40 1.40 47 0.74 37
	NL-TV-NCC [25]	36.8	0.10 41 0.26 38 0.08 38	0.22 33 0.72 35 0.15 20	0.35 39 0.85 40 0.10	11 0.15 18 0.70 10 0.09 2	0.79 39 1.16 42 0.51 29	0.78 64 1.38 48 0.48 61	0.16 65 0.15 59 0.26 50	0.55 35 1.16 37 0.55 7
	CostFilter [40]	36.9	0.10 41 0.27 45 0.08 38	0.20 25 0.63 19 0.15 20	0.228 0.458 0.18	19 0.19 48 0.88 44 0.12 5	0.60 11 0.90 14 0.28 5	0.75 63 1.19 35 0.50 62	0.21 89 0.24 100 0.40 89	0.46 13 1.02 26 0.62 11
	S2D-Matching [84]	37.0	0.09 29 0.26 38 0.07 14	0 23 45 0 80 54 0 18 37	0.3843 0.9345 0.20	40 0 15 18 0 70 10 0 09 2	0 70 28 1 03 28 0 51 29	0.5553 1.1732 0.3546	0 17 72 0 13 27 0 32 80	0.5128 1.0124 0.8144
	A corea Elouy (07)	20.0	0.11 0 0.23 0 0.09 10	0.21 0 0.06 0 0.22 0	0.26 + 0.85 + 0.2	co 0.17 co 0.94 co 0.10 c	0.70 - 1.17 - 0.54 -	0.27 0.95 0.40	0.11 1 0.12 0 0.02 0	0.50 0 1 10 0 0 92 0
	Aggreghtow [97]	30.0	0.11 48 0.32 64 0.06 38	0.31 69 0.9671 0.2367	0.3641 0.6540 0.2	63 <u>0.17</u> 37 0.04 35 0.10 4	<u>0.79</u> 39 1.1743 0.5433	<u>0.27</u> 4 0.059 0.191	<u>0.11</u> 11 0.1327 0.157	0.59 40 1.19 39 0.03 45
	SimpleFlow [49]	39.5	0.09 29 0.24 27 0.08 38	0.24 50 0.78 49 0.20 57	0.43 49 0.96 49 0.21	45 0.16 30 0.77 23 0.09 23	0.71 29 1.04 30 0.55 35	<u>1.47</u> 86 1.59 64 0.76 77	0.13 32 0.12 9 0.22 36	0.50 23 1.04 31 0.72 28
	Aniso-Texture [82]	40.0	0.087 0.213 0.0714	0.19 15 0.60 16 0.17 27	0.50 59 1.11 60 0.21	45 0.12 5 0.584 0.074	0.93 62 1.28 55 0.92 67	0.46 33 1.27 39 0.38 55	0.20 82 0.20 91 0.30 70	0.68 48 1.37 45 0.88 53
	Occlusion-TV-L1 [63]	41.2	0.09 29 0.26 38 0.07 14	0.22 33 0.74 41 0.18 37	0.51 61 1.15 64 0.21	45 0.18 44 0.91 47 0.10 44	0.87 49 1.25 47 0.72 50	0.47 36 1.38 48 0.36 50	0.10 4 0.129 0.112	0.83 67 1.78 70 0.96 61
	Adaptive [20]	44 1	0.0929.0.2638.0.065	0 23 45 0 78 49 0 18 37	0.5465 1.1970 0.21	45 0 1844 0 9147 0 104	0.8852 1.2547 0.7353	0.50 4 1.28 40 0.31 27	0 14 42 0 16 69 0 22 36	0.6545 1.3745 0.7941
ļ	SRR-TV/OF-NIL (94)	44.7	0 11 48 0 29 52 0 09 55	0.2864 0.9166 0.20 57	0.3945 0.9245 0.24	55 0 17 37 0 77 32 0 00 a	0.81 (2 1 11 27 0 79 58	0.339 1.02 17 0.28 1	0.19 0.18 0.24	0.57 37 1.01 24 0.77 42
	SRR-I VOI -NE [51]	44.7	0.11 40 0.23 55 0.00 50	0.20 64 0.91 66 0.20 5/	0.33 45 0.32 45 0.24	55 <u>0.11</u> 57 0.11 25 0.09 2	0.01 42 1.11 37 0.79 55	0.00 1.02 1/ 0.20 14	0.13 80 0.10 80 0.01 //	0.37 1.0124 0.7740
ļ	KFIOW [90]	45.4	0.1041 0.2745 0.0952	<u>0.19</u> 15 0.64 22 0.15 20	<u>0.46</u> 57 1.0756 0.18	19 0.2261 1.3173 0.114	<u>0.92</u> 60 1.3058 0.9166	0.42 23 1.42 54 0.31 27	0.14 42 0.13 27 0.24 43	<u>0.77</u> 61 1.6664 0.9458
	TCOF [69]	45.5	0.11 48 0.28 47 0.09 52	0.24 50 0.76 44 0.19 46	0.53 62 1.15 64 0.29	67 0.24 63 0.88 44 0.20 74	0.88 52 1.26 51 0.69 46	0.38 16 0.93 12 0.29 20	0.16 65 0.16 69 0.22 36	0.49 19 1.03 29 0.65 17
ļ	DPOF [18]	45.6	0.12 66 0.33 67 0.08 38	0.26 59 0.80 54 0.20 57	0.24 12 0.49 10 0.20	40 0.19 48 0.83 33 0.13 56	0.66 22 0.98 25 0.40 13	1.11 74 1.41 53 0.57 68	0.25 96 0.14 49 0.55 96	0.51 28 1.02 26 0.54 5
	Complementary OF [21]	46.0	0.11 48 0.28 47 0.10 66	0.18 10 0.63 19 0.12 5	0.31 33 0.75 34 0.18	19 0.19 48 0.97 54 0.12 52	0.97 67 1.31 62 1.00 73	1.78 95 1.73 73 0.87 85	0.11 11 0.12 9 0.22 36	0.68 48 1.48 51 0.95 59
ļ	ACK-Prior [27]	46.2	0.11 48 0.25 32 0.09 42	0.18 10 0.59 13 0 13 10	0.27 17 0.64 20 0 10	11 0.15 18 0.78 % 0.09 %	0.82 44 1.14 30 0.71 40	1.90 95 1.90 70 0.99 00	0.23 94 0.17 76 0 49 05	0.7761 1.44 50 0.91 55
	EnioElouv [102]	47.4	0.12 cc. 0.26 m. 0.00 cc	0.25 0.95 0.21	0.20 / 1.00 / 0.20		0.90 + 1.21 + 0.60 +	0.52 m 1.21 m 0.24 m	0.10 0.44 0.17 0	0.67 1 42 10 0.97 14
ļ		40.4	0.44 + 0.20 + 0.40	0.24 m 0.70 m 0.41	0.00 + 0.70 - 0.12	0.10 to 1.0150 0.114	0.00 + 1.01 + 0.09 +	4.05 - 4.71 0.01	0.10 0.111 0.17 12	0.04 + 4.50 - 0.07 51
	CompIOF-FED-GPU [35]	48.4	0.11 48 0.29 53 0.10 66	0.21 27 0.78 49 0.14 16	0.32 36 0.79 38 0.1	13 0.19 48 0.99 55 0.11 4	0.89 54 1.29 56 0.73 53	<u>1.25</u> 77 1.7474 0.6472	0.14 42 0.13 27 0.30 70	0.64 44 1.50 53 0.83 45
ļ	Classic++ [32]	49.8	0.09 29 0.25 32 0.07 14	0.23 45 0.78 49 0.19 46	0.43 49 1.00 52 0.22	50 0.20 53 1.11 61 0.10 4	0.87 49 1.30 58 0.66 45	0.47 36 1.62 65 0.33 37	0.17 72 0.14 49 0.32 80	0.79 65 1.64 62 0.92 56
	Aniso. Huber-L1 [22]	50.5	0.10 41 0.28 47 0.08 38	0.31 69 0.88 63 0.28 74	0.56 68 1.13 61 0.29	67 0.20 53 0.92 50 0.13 56	0.84 46 1.20 44 0.70 48	0.39 19 1.23 37 0.28 14	0.17 72 0.15 59 0.27 56	0.64 44 1.36 44 0.79 41
ļ	TF+OM [100]	51.7	0.10 41 0.26 38 0.07 14	0.22 33 0.66 25 0.19 46	0.36 41 0.78 36 0.39	75 0.20 53 0.89 46 0.13 56	0.98 70 1.31 62 1.03 74	0.56 54 1.55 62 0.33 37	0.16 65 0.17 76 0.27 56	0.76 57 1.59 60 0.98 63
ļ	DeepElow [86]	52.5	0 12 66 0 31 64 0 11 72	0.2864 0.8257 0.2244	0 44 55 1 00 52 0 33	72 0 26 69 1 34 76 0 15 69	0 81 42 1 21 /= 0 58 **	0.38 16 1.55 62 0.25 0	0 11 11 0 11 1 0 24 12	0.9373 1.8274 1.1274
ļ	00770-001	50.0	0.44	0.04	0.50 - 4.40		0.00 + 1.21 + 0.30 30	0.60 - 4.05 - 0.55	0.42m 0.44+ 0.24+0	0.70 4.77 0.05
ļ	CRITIOW [80]	52.5	0.11 48 0.30 58 0.08 38	0.24 50 0.77 46 0.17 27	0.50 59 1.13 61 0.21	45 0.23 62 1.24 68 0.12 5	0.86 48 1.27 53 0.65 44	0.60 57 1.95 83 0.50 62	0.12 22 0.14 49 0.21 31	0.7965 1.7769 0.9863
ļ	TriangleFlow [30]	53.2	0.11 48 0.29 53 0.09 52	0.26 59 0.95 69 0.17 27	0.47 58 1.07 56 0.18	19 0.16 30 0.87 42 0.09 2	1.07 77 1.47 83 1.10 79	0.87 67 1.39 50 0.57 68	0.15 54 0.19 89 0.23 42	0.63 43 1.33 42 0.84 48
ļ	TV-L1-improved [17]	55.4	0.09 29 0.26 38 0.07 14	0.20 25 0.71 34 0.16 24	0.53 62 1.18 69 0.22	50 0.21 58 1.24 68 0.11 46	0.90 56 1.31 62 0.72 50	1.51 88 1.93 81 0.84 81	0.18 77 0.17 76 0.31 77	0.73 53 1.62 61 0.87 51
ļ	SIOF [67]	55.7	0.11 48 0.28 47 0.09 52	0.27 62 0.95 69 0.20 57	0.60 75 1.17 66 0.48	76 0.25 67 1.13 62 0.16 66	0.97 67 1.33 67 1.03 74	0.43 25 1.32 44 0.36 50	0.13 32 0.13 27 0.18 17	0.76 57 1.52 55 1.14 75
ļ	LocallyOriented (52)	57.4	0.12 66 0.35 72 0.08 38	0.3373 1.0174 0.2570	0.6177 1.3078 0.28	64 0.18 44 0.80 29 0.13 54	0.93 62 1.29 56 0.79 58	0.9870 1.4858 0.5667	0.12 22 0.14 49 0.21 31	0.73 53 1.48 51 0.95 59
ļ	CBE [12]	57.5	0.10.41 0.28.47 0.09.09	0.3474 0.80 44 0.37 70	0.43 49 0.95 49 0.24	50 0.21 58 1.14 52 0.12 m	0.90 5 1.27 5 0.82 6	0.41 21 1.23 22 0.20 04	0.23 4 0.19 0.39	0.76 57 1.56 55 1.02 55
ļ	Derugi al 11	50.0	0.44 - 0.20 - 0.44	0.07 ** 0.00 ** 0.07 /8	0.00 0.04 0.0	0.04 m 4.05 m 0.10	4.40 - 4.00 - 4.02 - 4.02	0.00 - 4.27 - 0.55	0.40 - 0.40 - 0.41	0.04 - 4.00 - 4.42
ļ	Drux et al. [5]	39.6	0.1148 0.3264 0.1173	0.27 62 0.93 67 0.22 65	0.3945 0.9447 0.24	55 <u>0.24</u> 63 1.2570 0.1350	<u>1.10</u> 83 1.3977 1.4392	0.09 69 1.7776 0.55 66	0.104 0.1327 0.112	0.91 /0 1.6376 1.1373
ļ	Local-TV-L1 [65]	59.8	0.14 76 0.34 69 0.14 81	0.47 81 1.05 77 0.43 81	0.72 82 1.25 75 0.52	77 0.31 77 1.39 79 0.22 76	0.83 45 1.21 45 0.63 43	0.39 19 1.29 41 0.29 20	0.11 11 0.11 1 0.22 36	1.06 78 1.87 77 1.67 87
ļ	F-TV-L1 [15]	60.0	0.14 76 0.35 72 0.14 81	0.34 74 0.98 72 0.26 71	0.5974 1.1970 0.26	59 0.27 72 1.36 78 0.16 66	0.90 56 1.30 58 0.76 57	0.54 51 1.62 65 0.36 50	0.13 32 0.15 59 0.20 25	0.68 48 1.56 56 0.66 18
ļ	CLG-TV [48]	60.2	0.11 48 0.29 53 0.09 52	0.32 71 0.86 62 0.30 75	0.55 66 1.17 66 0.28	64 0.25 67 1.05 58 0.17 69	0.92 60 1.30 58 0.79 58	0.47 36 1.72 72 0.35 46	0.17 72 0.17 76 0.25 48	0.74 56 1.57 58 0.88 53
ļ	Fusion (6)	61.3	0.11 48 0.34 69 0.10 66	0.19 15 0.69 31 0.16 24	0.29 25 0.66 25 0.23	53 0.20 53 1.19 65 0.14 6	1.07 77 1.42 80 1.22 85	1.35 80 1.49 59 0.86 83	0.20 82 0.20 91 0.26 50	1.07 80 2.07 86 1.39 80
ļ	Rannacher (23)	61.4	0 11 48 0 31 61 0 09 69	0.25 55 0.84 50 0.21 50	0 57 71 1 27 77 0 24	50 0 24 63 1 32 74 0 13 4	0 91 59 1 33 57 0 72 50	1 49 87 1 95 82 0 78 78	0.15 54 0.14 49 0.26 55	0.6951 1.58 0.86 0
ļ	RungerElever (20)	64.7	0.44	0.24 - 0.05 - 0.2162	0.52 4.02	0 0.29 0 1.32 / 0.13 0	0.00 x 4.00 4.01	0.40 m 4.40 m 0.00	0.15 0 0.14 49 0.20 50	0.00 - 4.04 - 4.07
ļ	SuperFlow [81]	61.7	0.11 48 0.29 53 0.08 38	0.3474 0.8560 0.3376	0.53 62 1.08 59 0.59	80 0.2874 1.2367 0.2178	0.9971 1.3266 1.2184	0.46 33 1.49 59 0.36 50	0.15 54 0.16 69 0.19 21	0.90 69 1.81 72 1.07 67
J	TriFlow [95]	63.4	0.1266 0.3367 0.0952	0.30 68 0.89 64 0.27 72	10.56 68 1.17 66 0.57	79 0.21 58 0.92 50 0.16 66	1.07 77 1.38 73 1.19 83	0.35 14 1.19 35 0.29 20	10.52 102 0.22 94 1.30 102	0.73 53 1.42 48 0.83 45

Figure 2: Method evaluation on Middlebury benchmark with average end-point error (captured on 21-Nov-2014). Our method "PPR-Flow" (new name "PH-Flow" now) ranks 13rd among all the methods.

	EPE all	EPE matched	EPE unmatched	d0-10	d10-60	d60-140	s0-10	s10-40	s40+
EpicFlow [2]	4.115	1.360	26.595	3.660	1.079	0.599	0.712	2.117	25.859
PPR-Flow ^[3]	4.388	1.714	26.202	3.612	1.713	0.834	0.590	2.430	27.997
AggregFlow [4]	4.754	1.694	29.685	3.705	1.603	0.981	0.650	2.251	31.184
TF+OFM ^[5]	4.917	1.874	29.735	3.676	1.689	1.309	0.839	2.349	31.391
SparseFlowFused [6]	5.257	1.627	34.834	4.211	1.397	0.729	0.880	2.567	33.489
DeepFlow [7]	5.377	1.771	34.751	4.519	1.534	0.837	0.960	2.730	33.701
NNF-Local [8]	5.386	1.397	37.896	2.722	1.341	1.004	0.683	2.245	36.342
PatchWMF-OF [9]	5.550	1.781	36.257	3.339	1.843	1.277	0.581	2.612	37.319
WLIF-Flow ^[10]	5.734	1.759	38.125	3.242	1.818	1.296	0.597	2.512	39.036
AGIF+OF [11]	5.766	1.695	38.936	3.034	1.709	1.329	0.613	2.554	39.121
CVPR-738-Multi ^[12]	5.800	2.559	32.263	5.651	2.489	1.428	1.202	3.200	34.939
LocalLayering [13]	5.820	2.143	35.784	3.817	2.342	1.399	0.580	2.461	39.976
MDP-Flow2 ^[14]	5.837	1.869	38.158	3.210	1.913	1.441	0.640	2.603	39.459
ComponentFusion [15]	6.065	2.033	38.912	4.114	2.063	1.213	0.910	2.996	39.074
AnyFlow [16]	6.066	2.412	35.852	5.211	2.432	1.215	1.429	3.665	34.900
SparseFlow [17]	6.197	2.357	37.460	4.642	2.273	1.392	0.681	2.533	42.422
EPPM [18]	6.494	2.675	37.632	4.997	2.422	1.948	1.402	3.446	39.152
S2D-Matching [19]	6.510	2.792	36.785	5.523	3.018	1.546	0.622	3.012	44.187
Classic+NLP [20]	6.731	2.949	37.545	5.573	3.291	1.648	0.638	3.296	45.290
FC-2Layers-FF ^[21]	6.781	3.053	37.144	5.841	3.390	1.688	0.580	3.308	45.962

(a) Results on the "Clean" sequences. Our method "PPR-Flow" (new name "PH-Flow" now) ranks 2nd among all evaluated methods (method "EpicFlow" [4] was unpublished at the time of writing).

	EPE all	EPE matched	EPE unmatched	d0-10	d10-60	d60-140	s0-10	s10-40	s40+
EpicFlow [2]	6.285	3.060	32.564	5.205	2.611	2.216	1.135	3.727	38.021
TF+OFM ^[3]	6.727	3.388	33.929	5.544	3.238	2.551	1.512	3.765	39.761
SparseFlowFused [4]	7.189	3.286	38.977	5.567	3.098	2.159	1.275	3.963	44.319
DeepFlow [5]	7.212	3.336	38.781	5.650	3.144	2.208	1.284	4.107	44.118
NNF-Local [6]	7.249	2.973	42.088	4.896	2.817	2.218	1.159	4.183	44.866
AggregFlow [7]	7.329	3.696	36.929	5.538	3.435	2.918	1.241	4.296	44.858
PPR-Flow ^[8]	7.423	3.795	36.960	5.550	3.675	2.716	1.119	4.827	44.926
SparseFlow ^[9]	7.851	3.855	40.401	6.117	3.838	2.557	1.071	3.771	51.353
S2D-Matching [10]	7.872	3.918	40.093	5.975	3.815	2.851	1.172	4.695	48.782
AnyFlow [11]	7.933	3.994	40.027	6.284	3.997	2.756	2.279	5.391	42.122
PatchWMF-OF [12]	7.971	3.766	42.218	5.712	3.568	2.797	1.279	4.970	48.396
LocalLayering [13]	8.043	4.014	40.879	5.680	3.841	3.122	1.186	4.990	49.426
WLIF-Flow [14]	8.049	3.837	42.348	5.851	3.657	2.811	1.290	5.033	48.843
FC-2Layers-FF ^[15]	8.137	4.261	39.723	6.537	4.257	2.946	1.034	4.835	51.349
ComponentFusion [16]	8.231	4.274	40.460	6.221	4.252	3.193	1.702	5.701	46.696
CVPR-738-Multi ^[17]	8.235	4.660	37.397	7.596	4.642	3.133	1.976	4.630	48.019
MLDP-OF [18]	8.287	4.165	41.905	6.345	4.127	2.996	1.312	5.122	50.540
Classic+NLP [19]	8.291	4.287	40.925	6.520	4.265	2.984	1.208	5.090	51.162
EPPM [20]	8.377	4.286	41.695	6.556	4.024	3.323	1.834	4.955	49.083
MDP-Flow2 ^[21]	8.445	4.150	43.430	5.703	3.925	3.406	1.420	5.449	50.507

(b) Results on the "Final" sequences. Our method "PPR-Flow" (new name "PH-Flow" now) ranks 7th among all evaluated methods.

Figure 5: Method evaluation on the *test* set of Sintel benchmark with average end-point error (captured on 21-Nov-2014). We show 20 leading methods for the "Clean" and "Final" passes.