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(Supplementary Material)

1 Statistics of Weights and Activations

In the main paper we presented the statistics of weights and activations in the
ResNet-20 model quantized with “2/2” bits. Here we show the cases with “3/3”
bit-widths in Fig. I.
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Fig. I: Statistics of the weights (top row) and activations (bottom row) before (i.e.,
the floating-point values) and after quantization. The ResNet-20 model with “3/3”
quantization is used. The orange diamonds indicate the eight quantization levels of
our learned quantizers. Note that in the left figures for the floating-point values the
histogram bins are of equal step size, whereas in the right figures each of the four bins
contains all the values quantized to its corresponding quantization levels.

2 Detailed Hyper-Parameter and Other Setups

We presented here the detailed hyper-parameters and other training setups that
are omitted in the main paper due to space limitation.
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2.1 CIFAR-10 Experiments

Data augmentation: Following [4, 2], in the training stage we pad 4 pixels on
each side of the original 32×32 images, and randomly crop a 32×32 sample or
its horizontal flip. The original images are used at test time.

Hyper-parameters: For all the experiments on CIFAR-10, we train the models
for up to 200 epochs and use a momentum of 0.9. For the ResNet-20 model, the
learning rate starts at 0.1 and is divided by 10 at 82 and 123 epochs. Weight
decay of 1e−4 and batch size of 128 are adopted following the original paper.
For VGG-Small, the learning rate starts at 0.02 and is divided by 10 at 80 and
160 epochs. Following [1], we set weight decay to 5e−4 and batch size to 100.

2.2 ImageNet Experiments

Data augmentation: Our data augmentation strategy mostly follows [1]. Dur-
ing training, we first resize the shorter side of the images to 256, and then
randomly sample 224×224 (227×227 for AlexNet) image crops with horizontal
flipping applied at random. At test time, a single, centered crop of size 224×224
(227×227 for AlexNet) is used for each image. When training networks with bit-
widths larger than “1/2”, we follow the augmentation strategy of the ResNet
Torch implementation1. Specifically, we use the scale and aspect ratio augmen-
tation from [5] and color augmentation proposed in [3].

Hyper-parameters: For all the experiments on ImageNet, following [2] we
train the models for up to 120 epochs with a momentum of 0.9. For all the
experiments with bit-widths larger than “1/2”, the batch size is 256 and the
weight decay is 1e−4. The learning rate starts at 0.1 and is divided by 10 at 30,
60, 85, 95, 105 epochs.

When comparing against HWGQ [1] on ResNet, AlexNet, VGG-Variant and
GoogLeNet with bit-widths of “1/2”, we use the same hyper-parameters in
HWGQ’s implementation. Specifically, the learning rate starts at 0.1 for ResNet
and GoogLeNet, 0.01 for VGG-Variant, and 0.02 for AlexNet, respectively. Poly-
nomial learning rate annealing with power of 1 is adopted instead of the multi-
step annealing. The total training epoch is set to 64 for all experiments. The
batch size is 128 for VGG-Variant and 256 for others. The weight decay is 5e−4
for AlexNet and VGG-Variant, and 5e−5 for ResNet and GoogLeNet.
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