Face Pose Estimation with Combined 2D and 3D HOG Features

Jiaolong Yang, Wei Liang, Yunde Jia
Beijing Laboratory of Intelligent Information Technology
School of Computer Science, Beijing Institute of Technology, Beijing 100081, P.R. China
{yangjiaolong, liangwei, jiayunde} @bit.edu.cn

Abstract

This paper describes an approach to location and
orientation estimation of a person’s face with color im-
age and depth data from a Kinect sensor. The combined
2D and 3D histogram of oriented gradients (HOG) fea-
tures, called RGBD-HOG features, are extracted and
used throughout our approach. We present a coarse-to-
fine localization paradigm to obtain localization results
efficiently using multiple HOG filters trained in support
vector machines (SVMs). A feed-forward multi-layer
perception (MLP) network is trained for fine face ori-
entation estimation over a continuous range. The ex-
perimental result demonstrates the effectiveness of the
RGBD-HOG feature and our face pose estimation ap-
proach.

1. Introduction

Many approaches have been proposed to achieve
fast and robust face pose estimation over the past t-
wo decades. In a technical taxonomy, there exist four
main categories of face pose estimation methods. Multi-
detector methods [5][6] train a serious of detectors re-
lated to discrete poses or pose groups and assign a pose
sample to the detector with greatest support. Nonlin-
ear regression methods [3[[1O][12]] build the mapping
between the pose samples and the pose measuremen-
t using nonlinear regression. Motion-based method-
s [11][14] or tracking methods track the face in suc-
cessive frames and recover the motion parameter with
registration techniques. Model fitting methods [7]][13]]
fit some face models to the samples and estimate the
pose from the model parameters. Besides, these meth-
ods may also be divided depending on the type of data
they require, i.e., 2D images or depth data.

The advantages of nonlinear regression method-
s such as MLP [10][12] and locally-linear map [9]
are that they are very efficient and give some of
the most accurate face pose estimates in practice [§]].

However, they are very sensitive to localization er-
rors. Multi-detector methods can perform head local-
ization and pose estimation simultaneously, but they
can only provide coarse and discrete estimation results.
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In this paper, we propose a three-step face pose
estimation approach using both nonlinear regression
method and multi-detector method on the 2D and 3D
data from a Kinect sensor. Initially, nine detectors cor-
responding to nine different head orientation groups are
used to get the coarse location of the face. These detec-
tors are trained using linear SVMs. In order to achieve
more accurate localization results, a refining search on
the image coordinate and scale is then implemented
based on the coarse localization result. Localization er-
rors are reduced into an acceptable scope after the re-
fining step. Finally, a feed-forward MLP network is
applied to achieve orientation estimation results. HOG
features are extracted from both 2D and 3D data in face
localization and pose estimation. To the best of our
knowledge, this is the first trial using HOG features for
the task of face pose estimation.

2. Approach

We first introduce the HOG representation of the col-
or image and depth data in our approach. Then the three
steps for face pose estimation are described.

2.1. RGBD-HOG Representation

We define a dense HOG representation of an image
similar to the construction in [[L]. The image is divid-
ed into 8 x8 non-overlapping pixel cells. Gradient ori-
entations over pixels are accumulated into a histogram
in each cell. The gradient of each pixel is discretized
into one of nine orientation bins. For color images,
the channel with highest gradient magnitude is used at
each pixel. In each cell, four different normalization
factors are used to normalize the histogram in a cell to
build a 9 x4 dimensional feature. These factors measure
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the total energy in a square block of four cells contain-
ing the specific cell. An analytic dimension reduction
based on principal component analysis (PCA), which is
performed in a similar way to that of Felzenszwalb et
al. [4], is applied to get a 9-dimensional feature for one
cell with no noticeable loss of information.

The Kinect sensor captures color images and depth
images in pairs. HOG features are extracted from these
pairs. Features of a cell pair holding the same lo-
cation in the color and depth image are combined as
one 2D+3D feature, or RGBD-HOG feature, with 9 x2
dimensions. All of our processes are conducted on
RGBD-HOG features. Experiments show that the use
of RGBD-HOG features achieves better face pose esti-
mation results than using color features and depth fea-
tures separately.

2.2. Coarse Localization

Let H be an RGBD-HOG feature map, and (z,y)
denote the position of a particular cell. H(z,y,w,h)
is the vector with wxhx9x2 dimensions obtained by
concatenating the RGBD-HOG features in a wxh sub-
window with top-left corner at (x, y). An RGBD-HOG

't’s identical to filter on RGB-HOG features and Depth-HOG fea-
tures with two filters after which two response maps are added, or to
filter on the RGBD-HOG features with an RGBD-HOG filter directly.
For convenience we illustrate with the former process. But in practice
the latter one is used and we train one RGBD-HOG filter instead of
training two filters separately.

filter is a rectangular template specifying weights for
such a sub-window. A w by h filter F is also a vector of
wxhx9x2 weights. The response of an RGBD-HOG
filter on a feature sub-window is defined as

R(x,y) = F-H(x,y,w,h) +b, (1)

where R denotes the response map and b denotes the
bias. Figure [I] illustrates the detection process using
an RGBD-HOG filter (the RGB and Depth images are
from [3]).

In order to obtain accurate localization results with
HOG features, Dalal et al. [2] run detection on multiple
scales to get multiple candidates and chose the one with
strongest response. However, the process of multi-scale
detection on the whole image is very time-consuming.
In our approach, we choose the scale based on the depth
data to get coarse localization results. Images are scaled
such that people are at roughly the same distance before
the camera.

In the training stage, images are scaled as described
above. Yaw and pitch angles are discretized into three
intervals of <-20°, [-20°, 20°] and >20°, dividing the
images into nine groups. We train nine RGBD-HOG fil-
ters corresponding to the nine groups using one-against-
others strategy. Face patches are cropped out as pos-
itive samples for each pose group. Negative samples
for group 7 involves positive samples in group 1, ..., -
1, 2+1, ..., 9 and randomly selected patches outside the
face region. RGBD-HOG features are extracted from
these samples and filters are trained in linear SVMs.

In the detection stage, the sample with a left-top cor-
ner at position (x, y) is classified as class k,

|0, max; R;(z,y)<0

_{ argmax; R;(x,y), max; R;(z,y)>0 ’ @

where R;(x,y) denotes the response of the RGBD-
HOG filter for group 7, and k = 0 indicates a non-face
region. A simple non-maximum suppression process is
then performed for fusion of overlapping detections.

2.3. Location Refinement

The coarse localization solution is based on an im-
portant hypothesis: the detector should give a strong
positive response even if the detection window is slight-
ly off-center or off-scale on the object. The primaries of
the feature maps are 8§ x8 cells. During detection, the s-
canning window of the filter moves cell by cell, which
means that 7 pixels will be skipped. Without multi-scale
solution, expectation of the localization error is large
even if the detector is ideally robust. Besides, the scale
we choose based on the depth information is not abso-
lutely reliable since size of the face differs from person
to person. So the location should be refined.



Figure 2. Location refinement with the re-
sponse pyramid. The blue and red rectan-
gle indicates the face region before and
after refinement and the green rectangle
indicates the ground truth.

In the refining step, we examine the responses of the
selected filter in the coarse localization step pixel by
pixel on multiple scales. Suppose we get a detection
result at position (x,y) in the feature map, the left-top
corner of the face rectangle in the image will be at (r, ¢)
where r = 8xx and ¢ = 8xy. We move the corner of
the rectangle to (r + 7, ¢ + dc) where dr, dc € [—d, d]
and d < 4. New RGBD-HOG features and the response
will be computed after each movement. Besides, the
image will be scaled with the factor 1+ds. The search
of the highest response in the response pyramid is per-
formed. Influence of different values of d is discussed in
Section |3] Let (6r*,dc*, ds*) denotes the optimal dis-
placement for the face window, the final location after
refinement is given by

r* = (r+4d*)/(1+ds*)
{ ¢ = (c+6c¢) /(1 +65%) 3)

Figure 2] illustrates that the localization error can be re-
duced by choosing the displacement with the highest
response.

Note that thought exhaustive search in position and
scale is very time-consuming, the computational cost is
low since the process is conducted on a small sub-image
which is slightly larger than the face region.

2.4. Orientation Estimation

A neural network solution for the task of pose esti-
mation is chosen based on the fact that our system can
locate the face with low error so advantages of this non-
linear regression method can be used to obtain fine esti-
mation results.

We train a MLP network for face orientation estima-
tion over a continuous orientation range. The network
follows a three-layered, feed-forward topology. The in-
put layer has wxhx9x2 neurons which is the same as
the number of weights in an RGBD-HOG filter, so the
RGBD-HOG features of a localization result can be fed
into the network directly without extra computation of

features. The hidden layer includes 10 hidden neurons
and the output layer has three neurons corresponding to
the yaw, pitch and roll angles of the head.

3. Experiments

The dataset we use is Biwi Kinect Head Pose
Database [3]], which contains color and depth images
in pair from a Kinect sensor. The color image and the
depth image are matched based on the camera calibra-
tion information. There are 24 sequences of 20 different
persons in the dataset. For evaluation, the dataset is di-
vided into a training set and a testing set of 18 and 6
sequences. We select the mean width and height of all
the face bounding boxes of 7459 frames in the training
dataset, and create new bounding boxes with the orig-
inal center and new size. Sub-images of the color and
depth images are cropped out as the training samples.
The size of these sub-images is 98 x102. RGBD-HOG
feature of 10x 10 cells are extracted from the training
images and concatenated to be an RGBD-HOG feature
vector of 10x10x9x2=1800 dimensions for one sam-
ple. So both the number of weights in an RGBD-HOG
filter and the number of neurons in the input layer of the
neural network are 1800.

Our first experiment examines the performance us-
ing RGBD-HOG features, RGB-HOG features and
Depth-HOG features. Coarse localization errors in one
test sequence are shown in Figure[3] The RGBD-HOG
performs best and Depth-HOG ranks second in this ex-
periment. Table [T shows the mean and standard devi-
ation of the errors in the face pose estimation experi-
ments on 640x480 color and depth images. Both false
positive rate and false negative rate of the detection are
rather low (<1%). The more displacement we search
(the larger value of d is chosen) in the refining step, the
lower the errors would be. Since the scale is rather well
after the scaling based on the depth information and s-
mall changes are enough to obtain fine estimation re-
sults, ds is fixed among three values {-0.05, 0, 0.05}.
The pose estimation method runs at about 10 fps with
d =4 on a 2.93GHz 6-core Intel Xeon CPU. Figure {4
shows some examples of the face pose estimation re-
sults.

4. Conclusion

We have proposed an RGBD-HOG feature based ap-
proach for estimating face location and orientation with
color image and depth data from a Kinect sensor. The
combination of color and depth information achieved
more robust estimation than using color and depth in-
formation separately. A coarse-to-fine face localization
method using multiple HOG filters is adopted to locate



Table 1. Mean and standard deviation of the errors in face pose estimation experiments

E:rf)?lz;?)t(l:ll)l I;(;:(?rh(zritrlg)n Yaw error (°) | Pitch error (°) | Roll error (°)

Coarse 5.84/3.16 8.85/5.24 10.63/9.83 12.41/9.09 10.43/7.66
Fine(d=1) | 5.19/2.86 7.7214.42 10.19/9.84 11.16/8.42 9.37/6.74
Fine (d=2) | 4.62/2.39 6.83/4.33 9.42/8.70 10.23/8.14 8.23/5.92
Fine (d=4) | 3.97/2.18 6.24/3.71 8.92/8.27 9.12/7.40 7.42/4.90

80 RGB-HOG
T 60 Depth-HOG
= 40 RGBD-HOG
» M
i L et

0 50 100 150 200 250 300
Frame

Figure 3. Localization errors with different

features. High values indicate false detec-

tions.

the face. A feed-forward MLP network is applied for
fine and continuous face orientation estimation. Exper-
iments show that our approach achieves fast face pose
estimation with low errors.
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