Single-shot Extrinsic Calibration of Generically Configured RGB-D Camera Rig from Scene Constraints

Jiaolong Yang*, Yuchao Dai^, Hongdong Li^, Henry Gardner^ and Yunde Jia*

*Beijing Institute of Technology (BIT), ^The Australian National University (ANU)
Introduction

• Calibration parameters are required to fuse the color and depth images for AR/MR Application

• Intrinsic parameters are often fixed while extrinsic parameters can be subject to change, see e.g.
Related Work

• Calibration with checkerboard pattern

Q. Zhang and R. Pless *IROS’04*

D. Herrera *et al. PAMI’12*

C. Zhang and Z. Zhang. *ICME’11*
Related Work

• Calibration with checkerboard pattern (single shot)

A. Geiger et al. ICRA’12
Related Work

• Hand-eye calibration
 – R. Y. Tsai and R. K. Lenz. *T-RA’89*
 – R. Horaud and F. Dornaika. *IJRR’95*
 – N Andreff, R Horaud, B Espiau. *IJRR’01*
 – Y. Dai *et al.* *ACCV’09*
 – …
Single-shot Extrinsic Calibration

- Our target:
 - Single-shot versus multi-shot
 - Scene constraints versus calibration patterns

- The principles:
 - Color image and depth map measure the scene in different modalities from different positions
 - Scene constraints are invariant to view and modalities
 - Single-shot with scene constraints provide enough information for extrinsic calibration
Single-shot Extrinsic Calibration

• Scene constraints:
 – Distance: known distance, distance equivalency
 – Angle: parallel, orthogonal, known angle

• Evaluation:
 – Inverse projection
 – Scene knowledge measurement
 – Scene knowledge discrepancy

• Benefits:
 – Hand held camera application
 – Post processing/ permit varying extrinsic parameters
Scene Constraints Evaluation

Measurements with **Wrong** Transformation

Measurements with **Optimal** Transformation

Scene Constraints (Ground Truth)
Single-shot Extrinsic Calibration

\[(u^c_i, v^c_i) = g(\Theta) \circ (x^d_i, y^d_i, z^d_i)\]

\[(x^d_i, y^d_i, z^d_i) = g^{-1}(\Theta) \circ (u^c_i, v^c_i)\]
Single-shot Extrinsic Calibration

- Inverse projection estimation by triangulation

The image plane of the color camera with pixel grids
Single-shot Extrinsic Calibration

Given a Θ we can compute the discrepancy/error between a scene constraint and its measurement.

- Known distance constraint:
 $$e_k(\Theta) = \|g^{-1}(\Theta) \circ (u_i^c, v_i^c) - g^{-1}(\Theta) \circ (u_j^c, v_j^c)\| - l_{ij}$$

- Distance equivalency constraint:
 $$e_d(\Theta) = \|g^{-1}(\Theta) \circ (u_i^c, v_i^c) - g^{-1}(\Theta) \circ (u_j^c, v_j^c)\| -$$
 $$\|g^{-1}(\Theta) \circ (u_k^c, v_k^c) - g^{-1}(\Theta) \circ (u_i^c, v_i^c)\|$$

- Angular constraints:

Our goal is to find optimal transformation minimizing the total geometric error:

\[\Theta^* = \arg\min_{\Theta \in SE(3)} \sum_i e_i(\Theta)^2 \]

Minimization:

- Levenberg-Marquardt algorithm (numerical gradients)
- Nelder-Mead simplex downhill on \(SE(3) \) manifold (gradient free)
Initialization

• Build pointset in the color camera by **Single View Reconstruction (SVR) with Scene Constraints**

• Find transformation between color and depth point clouds by **Pointset Registration**
The corresponding 3D point of \((u^C_i, v^C_i)\) lies on the ray with direction \(K^{-1}[u^C_i \ v^C_i \ 1]^T\) with unknown projective depth \(\lambda_i\) to determine.
Initialization

- Single View Reconstruction (SVR)

The known distance (see paper for more constraints and minimal configuration) between two 3D points gives constraint on the projective depth

\[
\begin{align*}
\min & \quad \text{trace}(Y) \\
\text{such that} & \quad \text{tr}(A_{ij}Y) = d_{ij}^2, \forall (i, j) \in \mathcal{N}.
\end{align*}
\]

Semi-Definite Programming (SDP) problem
Initialization

• Pointset registration

Two point clouds: \(\{X^c_i\}, \{X^d_j\} \)

– ICP: \(\Theta_0 = \arg\min_{\Theta \in SE(3)} \sum_i \min_j \| (R X^c_i + t) - X^d_j \|^2 \).

– Go-ICP (Globally-optimal ICP) (J. Yang, H. Li, Y. Jia, to appear in ICCV’13)
Experiments

- Synthetic scene: two cylinders
Experiments

- Synthetic data: two cylinders
 - Quantitative results

<table>
<thead>
<tr>
<th></th>
<th>Angle (°)</th>
<th>Axis</th>
<th>Translation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground truth</td>
<td>5.067</td>
<td>-0.100,-0.128,-0.987</td>
<td>-0.113,-0.086,0.500</td>
</tr>
<tr>
<td>Our method</td>
<td>5.106</td>
<td>-0.096,-0.128,-0.986</td>
<td>-0.112,-0.078,0.503</td>
</tr>
</tbody>
</table>
Experiments

- Synthetic data: two cylinders
 - Qualitative results
Experiments

- Real-world scene: three A4 paper
Experiments

- Real-world scene: three A4 paper
 - Quantitative results

<table>
<thead>
<tr>
<th></th>
<th>Angle (°)</th>
<th>Axis</th>
<th>Translation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herrera et al.[9]</td>
<td>17.225</td>
<td>0.102 -0.986 0.131</td>
<td>0.280 0.046 0.083</td>
</tr>
<tr>
<td>Our method</td>
<td>17.619</td>
<td>0.104 -0.983 0.153</td>
<td>0.273 0.043 0.091</td>
</tr>
</tbody>
</table>
Experiments

• Real-world scene: three A4 paper
 – Qualitative results
Experiments

- Real-world scene: three A4 paper
 - AR Application
Summary

• **Single-shot** extrinsic calibration of generally configured RGB-D camera rig from scene constraints

• Single view reconstruction + pointset registration for initialization

• Without specifically designed patterns

• Correspondence-free

• Geometric error minimization

• Less human intervention
Thanks