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Go-ICP: A Globally Optimal Solution to
3D ICP Point-Set Registration
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Abstract—The Iterative Closest Point (ICP) algorithm is one of the most widely used methods for point-set registration. However,
being based on local iterative optimization, ICP is known to be susceptible to local minima. Its performance critically relies on the
quality of the initialization and only local optimality is guaranteed. This paper presents the first globally optimal algorithm, named
Go-ICP, for Euclidean (rigid) registration of two 3D point-sets under the L2 error metric defined in ICP. The Go-ICP method is
based on a branch-and-bound (BnB) scheme that searches the entire 3D motion space SE(3). By exploiting the special structure
of SE(3) geometry, we derive novel upper and lower bounds for the registration error function. Local ICP is integrated into the
BnB scheme, which speeds up the new method while guaranteeing global optimality. We also discuss extensions, addressing
the issue of outlier robustness. The evaluation demonstrates that the proposed method is able to produce reliable registration
results regardless of the initialization. Go-ICP can be applied in scenarios where an optimal solution is desirable or where a good
initialization is not always available.

Index Terms—3D point-set registration, global optimization, branch-and-bound, SE(3) space search, iterative closest point
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1 INTRODUCTION

POINT-SET registration is a fundamental problem
in computer and robot vision. Given two sets of

points in different coordinate systems, or equivalently
in the same coordinate system with different poses,
the goal is to find the transformation that best aligns
one of the point-sets to the other. Point-set registration
plays an important role in many vision applications.
Given multiple partial scans of an object, it can be
applied to merge them into a complete 3D model [1],
[2]. In object recognition, fitness scores of a query
object with respect to existing model objects can be
measured with registration results [3], [4]. In robot
navigation, localization can be achieved by registering
the current view into the global environment [5], [6].
Given cross-modality data acquired from different
sensors with complementary information, registration
can be used to fuse the data [7], [8] or determine the
relative poses between these sensors [9], [10].

Among the numerous registration methods pro-
posed in literature, the Iterative Closest Point (ICP)
algorithm [11], [12], [13], introduced in the early 1990s,
is the most well-known algorithm for efficiently regis-
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tering two 2D or 3D point-sets under Euclidean (rigid)
transformation. Its concept is simple and intuitive:
given an initial transformation (rotation and transla-
tion), it alternates between building closest-point cor-
respondences under the current transformation and
estimating the transformation with these correspon-
dences, until convergence. Appealingly, point-to-point
ICP is able to work directly on the raw point-sets,
regardless of their intrinsic properties (such as distri-
bution, density and noise level). Due to its conceptual
simplicity, high usability and good performance in
practice, ICP and its variants are very popular and
have been successfully applied in numerous real-
world tasks ( [7], [14], [15], for example).

However, ICP is also known for its susceptibility to
the problem of local minima, due to the non-convexity
of the problem as well as the local iterative procedure
it adopts. Being an iterative method, it requires a good
initialization, without which the algorithm may easily
become trapped in a local minimum. If this occurs,
the solution may be far from the true (optimal) solu-
tion, resulting in erroneous estimation. More critically,
there is no reliable way to tell whether or not it is
trapped in a local minimum.

To deal with the issue of local minima, previous
efforts have been devoted to widening the basin of
convergence [16], [17], performing heuristic and non-
deterministic global search [18], [19] and utilizing
other methods for coarse initial alignment [20], [21],
etc. However, global optimality cannot be guaranteed
with these approaches. Furthermore, some methods,
such as those based on feature matching, are not
always reliable or even applicable when the point-sets
are not sampled densely from smooth surfaces.

Manuscript accepted by T-PAMI (in press)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016 2

This work is, to the best of our knowledge, the
first to propose a globally optimal solution to the
Euclidean registration problem defined by ICP in 3D.
The proposed method always produces the exact and
globally optimal solution, up to the desired accuracy.
Our method is named the Globally Optimal ICP, abbre-
viated to Go-ICP.

We base the Go-ICP method on the well-established
Branch-and-Bound (BnB) theory for global opti-
mization. Nevertheless, choosing a suitable domain
parametrization for building a tree structure in BnB
and, more importantly, deriving efficient error bounds
based on the parametrization are both non-trivial.
Our solution is inspired by the SO(3) space search
technique proposed in Hartley and Kahl [22] as well
as Li and Hartley [23]. We extend it to SE(3) space
search and derive novel bounds of the 3D registration
error. Another feature of the Go-ICP method is that
we employ, as a subroutine, the conventional (local)
ICP algorithm within the BnB search procedure. The
algorithmic structure of the proposed method can be
summarized as follows.

Use BnB to search the space of SE(3)
Whenever a better solution is found, call ICP
initialized at this solution to refine (reduce) the
objective function value. Use ICP’s result as an
updated upper bound to continue the BnB.

Until convergence.

Our error metric strictly follows that of the original
ICP algorithm, that is, minimizing the L2 norm of
the closest-point residual vector. We also show how a
trimming strategy can be utilized to handle outliers.
With small effort, one can also extend the method with
robust kernels or robust norms. A preliminary version
of this work was presented as a conference paper [24].

1.1 Previous Work

There is a large volume of work published on ICP
and other registration techniques, precluding us from
giving a comprehensive list. Therefore, we will focus
below on some relevant Euclidean registration works
addressing the local minimum issue in 2D or 3D. For
other papers, the reader is referred to two surveys
on ICP variants [6], [25], a recent survey on 3D point
cloud and mesh registration [26], an overview of 3D
registration [27] and the references therein.

Robustified Local Methods. To improve the robust-
ness of ICP to poor initializations, previous work has
attempted to enlarge the basin of convergence by
smoothing out the objective function. Fitzgibbon [16]
proposed the LM-ICP method where the ICP error
was optimized with the Levenberg–Marquardt algo-
rithm [28]. Better convergence than ICP was observed,
especially with the use of robust kernels.

It was shown by Jian and Vemuri [29] that if
the point-sets are represented with Gaussian Mix-
ture Models (GMMs), ICP is related to minimizing
the Kullback-Leibler divergence of two GMMs. Al-
though improved robustness to outliers and poor
initializations could be achieved by GMM-based tech-
niques [17], [29], [30], [31], the optimization was still
based on local search. Earlier than these works, Ran-
garajan et al. [32] presented a SoftAssign algorithm
which assigned Gaussian weights to the points and
applied deterministic annealing on the Gaussian vari-
ance. Granger and Pennec [33] proposed an algorith-
m named Multi-scale EM-ICP where an annealing
scheme on GMM variance was also used. Biber and S-
traßer [34] developed the Normal Distributions Trans-
form (NDT) method, where Gaussian models were
defined for uniform cells in a spatial grid. Magnusson
et al. [35] experimentally showed that NDT was more
robust to poor initial alignments than ICP.

Some methods extend ICP by robustifying the dis-
tance between points. For example, Sharp et al. [36]
proposed the additional use of invariant feature de-
scriptor distance; Johnson and Kang [37] exploited
color distances to boost the performance.

Global Methods. To address the local minima prob-
lem, global registration methods have also been inves-
tigated. A typical family adopts stochastic optimiza-
tion such as Genetic Algorithms [19], [38], Particle
Swam Optimization [39], Particle Filtering [18] and
Simulated Annealing schemes [1], [40]. While the local
minima issue is effectively alleviated, global optimal-
ity cannot be guaranteed and initializations still need
to be reasonably good as otherwise the parameter
space is too large for the heuristic search.

Another class of global registration methods intro-
duces shape descriptors for coarse alignment. Local
descriptors, such as Spin Images [3], Shape Con-
texts [4], Integral Volume [41] and Point Feature His-
tograms [20] are invariant under specific transfor-
mations. They can be used to build sparse feature
correspondences, based on which the best transfor-
mation can be found with random sampling [20],
greedy algorithms [3], Hough Transforms [42] or BnB
algorithms [41], [43]. Global shape descriptors, such
as Extended Gaussian Images (EGI) [21], can be used
to find the best transformation maximizing descriptor
correlation. These methods are often robust and can
efficiently register surfaces where the descriptor can
be readily computed.

Random sampling schemes such as RANSAC [44]
can also be used to register raw point clouds di-
rectly. Irani and Raghavan [45] randomly sampled
2-point bases to align 2D point-sets using similarity
transformations. For 3D, Aiger et al. [46] proposed
a 4PCS algorithm that sampled coplanar 4-points,
since congruent coplanar 4-point sets can be efficiently
extracted with affine invariance.
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Globally Optimal Methods. Registration methods
that guarantee optimality have been published in the
past, albeit in a smaller number. Most of them are
based on BnB algorithms. For example, geometric BnB
has been used for 2D image pattern matching [47],
[48], [49]. These methods share a similar structure
with ours: given each transformation sub-domain,
determine for each data point the uncertainty region,
based on which the objective function bounds are
derived and the BnB search is applied. However,
despite uncertainty region computation with various
2D transformations has been extensively explored,
extending them to 3D is often impractical due to the
heightened complexity [47].

For 3D registration, Li and Hartley [23] proposed
using a Lipschitzized L2 error function that was
minimized by BnB. However, this method makes
unrealistic assumptions that the two point-sets are of
equal size and that the transformation is pure rotation.
Olsson et al. [50] obtained the optimal solution to
simultaneous point-to-point, point-to-line and point-
to-plane registration using BnB and bilinear relaxation
of rotation quaternions. This method, although related
to ours, requires known correspondences. Recently,
Bustos et al. [51] proposed searching SO(3) space
for optimal 3D geometric matching, assuming known
translation. Efficient run-times were achieved using
stereographic projection techniques.

Some optimal 3D registration methods assume a
small number of putative correspondences, and treat
registration as a correspondence outlier removal prob-
lem. For example, to minimize the overall pairwise
distance error, Gelfand et al. [41] applied BnB to assign
one best corresponding model point for each data
point. A similar idea using pairwise consistency was
proposed by Enqvist et al. [52], where the inlier-set
maximization was formulated as an NP-hard graph
vertex cover problem and solved using BnB. Using
angular error, Bazin et al. [43] solved a similar corre-
spondence inlier-set maximization problem via SO(3)
space search assuming known translation. Enqvist
and Kahl [53] optimally solved camera pose in SE(3)
via BnB. However, the key insight is that with pre-
matched correspondences, their pairwise constraint
(also used in [52]) enabled a single translation BnB
in R3 to solve the SE(3) problem.

In this paper, we optimally solve the 3D Euclidean
registration problem with both rotation and transla-
tion. The proposed Go-ICP method is able to work
directly on raw sparse or dense point-sets (which
may be sub-sampled only for reasons of efficiency),
without the need for a good initialization or putative
correspondences. The method is related to the idea
of SO(3) space search, as proposed in [22], [23] and
extended in [43], [54], [55], etc. We extend the 3-
dimensional SO(3) search to 6-dimensional SE(3)
search, which is much more challenging.
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Fig. 1: Nonconvexity of the registration problem. Top: two 1D point-
sets {x1, x2} and {y1, y2, y3}. Bottom-left: residual error (closest-
point distance) for x1 as a function of translation t; the three dashed
curves are ‖x1+t−yj‖ with j = 1, 2, 3 respectively. Bottom-right:
the overall L2 registration error; the two dashed curves are ei(t)

2

with i=1, 2 respectively. The residual error functions are nonconvex,
thus the L2 error function is also nonconvex.

2 PROBLEM FORMULATION

In this paper we define the L2-norm registration
problem in the same way as in the standard point-
to-point ICP algorithm. Let two 3D point-sets X =
{xi}, i = 1, ..., N and Y = {yj}, j = 1, ...,M , where
xi,yj ∈ R3 are point coordinates, be the data point-
set and the model point-set respectively. The goal is
to estimate a rigid motion with rotation R ∈ SO(3)
and translation t∈R3, which minimizes the following
L2-error E,

E(R, t) =
N∑

i=1

ei(R, t)
2 =

N∑

i=1

‖Rxi + t− yj∗‖2 (1)

where ei(R, t) is the per-point residual error for xi.
Given R and t, the point yj∗ ∈ Y is denoted as the
optimal correspondence of xi, which is the closest
point to the transformed xi in Y , i.e.

j∗ = argmin
j∈{1,..,M}

‖Rxi + t− yj‖. (2)

Note the short-hand notation used here: j∗ varies as
a function of (R, t) and also depends on xi.

Equations (1) and (2) actually form a well-known
chicken-and-egg problem: if the true correspondences
are known a priori, the transformation can be opti-
mally solved in closed-form [56], [57]; if the optimal
transformation is given, correspondences can also be
readily found. However, the joint problem cannot
be trivially solved. Given an initial transformation
(R, t), ICP iteratively solves the problem by alternat-
ing between estimating the transformation with (1),
and finding closest-point matches with (2). Such an
iterative scheme guarantees convergence to a local
minimum [11].

(Non-)Convexity Analysis. It is easy to see from (1)
that the transformation function denoted by Tx(p)
affinely transforms a point x with parameters p, thus
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the residual function e(p) = d(Tx(p)) is convex pro-
vided that domain Dp is a convex set (Condition 1) and
d(x) = infy∈Y ‖x − y‖ is convex. Moreover, it has
been shown in [58] and further in [50] that d(x) is
convex if and only if Y is a convex set (Condition 2). For
registration with pure translation, Condition 1 can be
satisfied as the domain Dp is R3. However, Y is often
a discrete point-set sampled from complex surfaces
and is thus rarely a convex set, violating Condition 2.
Therefore, e(p) is nonconvex. Figure 1 shows a 1D
example. For registration with rotation, even Condi-
tion 1 cannot be fulfilled, as the rotation space induced
by the quadratic orthogonality constraints RRT = I
is clearly not a convex set.

Outlier Handling. As is well known, L2-norm least
squares fitting is susceptible to outliers. A small num-
ber of outliers may lead to erroneous registration,
even if the global optimum is achieved. There are
many strategies to deal with outliers [16], [25], [29],
[59], [60]. In this paper, a trimmed estimator is used
to gain outlier robustness similar to [60]. To stream-
line the presentation and mathematical derivation, we
defer the discussion to Sec. 5.3. For now we assume
there are no outliers and focus on minimizing (1).

3 THE BRANCH AND BOUND ALGORITHM

The BnB algorithm is a powerful global optimization
technique that can be used to solve nonconvex and
NP-hard problems [61]. Although existing BnB meth-
ods work successfully for 2D registration, extending
them to search SE(3) and solve 3D rigid registration
has been much more challenging [23], [47]. In order to
apply BnB to 3D registration, we must consider i) how
to parametrize and branch the domain of 3D motions
(Sec. 3.1), and ii) how to efficiently find upper bounds
and lower bounds (Sec. 4).

3.1 Domain Parametrization
Recall that our goal is to minimize the error E in
(1) over the domain of all feasible 3D motions (the
SE(3) group, defined by SE(3) = SO(3) × R3). Each
member of SE(3) can be minimally parameterized by
6 parameters (3 for rotation and 3 for translation).

Using the angle-axis representation, each rotation can
be represented as a 3D vector r, with axis r/‖r‖ and
angle ‖r‖. We use Rr to denote the corresponding
rotation matrix for r. The 3x3 matrix Rr ∈ SO(3) can
be obtained by the matrix exponential map as

Rr = exp([ r ]×) = I+
[ r ]×sin ‖r‖
‖r‖ +

[ r ]2×(1−cos ‖r‖)
‖r‖2

(3)
where [ · ]× denotes the skew-symmetric matrix rep-
resentation

[ r ]× =




0 −r3 r2

r3 0 −r1
−r2 r1 0


 (4)

π

(a) Rotation domain

ξ

(b) Translation domain

Fig. 2: SE(3) space parameterization for BnB. Left: the rotation
space SO(3) is parameterized in a solid radius-π ball with the angle-
axis representation. Right: the translation is assumed to be within
a 3D cube [−ξ, ξ]3 where ξ can be readily set. The octree data-
structure is used to divide (branch) the domains and the yellow box
in each diagram represents a sub-cube.

where ri is the ith element in r. Equation 3 is also
known as the Rodrigues’ rotation formula [62]. The
inverse map is given by the matrix logarithm as

[ r ]× = logRr =
‖r‖

2 sin ‖r‖ (Rr −RT
r ) (5)

where ‖r‖=arccos
(
(trace(Rr)−1)/2

)
. With the angle-

axis representation, the entire 3D rotation space can be
compactly represented as a solid radius-π ball in R3.
Rotations with angles less than (or, equal to) π have
unique (or, two) corresponding angle-axis representa-
tions on the interior (or, surface) of the ball. For ease
of manipulation, we use the minimum cube [−π, π]3
that encloses the π-ball as the rotation domain.

For the translation part, we assume that the optimal
translation lies within a bounded cube [−ξ, ξ]3, which
may be readily set by choosing a large number for ξ.

During BnB search, initial cubes will be subdivided
into smaller sub-cubes Cr, Ct using the octree data-
structure and the process is repeated. Figure 2 illus-
trates our domain parametrization.

4 BOUNDING FUNCTION DERIVATION
For our 3D registration problem, we need to find the
bounds of the L2-norm error function used in ICP
within a domain Cr × Ct. Next, we will introduce
the concept of an uncertainty radius as a mathematical
preparation, then derive our bounds based on it.

4.1 Uncertainty Radius
Intuitively, we want to examine the uncertainty region
of a 3D point x perturbed by an arbitrary rotation
r ∈ Cr or a translation t ∈ Ct. We aim to find
a ball, characterised by an uncertainty radius, that
encloses such an uncertainty region. We will use the
first two lemmas of [63] in the following derivation.
For convenience, we summarize both lemmas in a
single Lemma shown below.

Lemma 1. For any vector x and two rotations Rr and
Rr0 with r and r0 as their angle-axis representations, we
have

∠(Rrx,Rr0x) 6 ∠(Rr,Rr0) 6 ‖r− r0‖, (6)
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O

Rrx

Rr0x‖x‖

‖Rrx−Rr0x‖/2
∠(Rrx,Rr0x)/2

Fig. 3: Distance computation from Rrx to Rr0x used in the deriva-
tion of the rotation uncertainty radius.

where ∠(Rr,Rr0) = arccos
(
(trace(RT

r Rr0)−1)/2
)

is
the angular distance between rotations.

The second inequality in (6) means that the an-
gular distance between two rotations on the SO(3)
manifold is less than the Euclidean vector distance of
their angle-axis representations in R3. Based on this
Lemma, uncertainty radii are given as follows.

Theorem 1. (Uncertainty radius) Given a 3D point x, a
rotation cube Cr of half side-length σr with r0 as the center
and examining the maximum distance from Rrx to Rr0x,
we have ∀r ∈ Cr,

‖Rrx−Rr0x‖62 sin(min(
√
3σr/2, π/2))‖x‖ .=γr. (7)

Similarly, given a translation cube Ct with half side-length
σt centered at t0, we have ∀t ∈ Ct,

‖(x+ t)− (x+ t0)‖ 6
√
3σt

.
= γt. (8)

Proof: Inequality (7) can be derived from

‖Rrx−Rr0x‖ (9)
= 2 sin(∠(Rrx,Rr0x)/2)‖x‖ (10)
6 2 sin(min(∠(Rr,Rr0)/2, π/2))‖x‖ (11)
6 2 sin(min(‖r− r0‖/2, π/2))‖x‖ (12)

6 2 sin(min(
√
3σr/2, π/2))‖x‖ (13)

where (10) is illustrated in Fig. 3. Inequalities (11), (12)
are based on Lemma 1, and (13) is from the fact that
r resides in the cube.

Inequality (8) can be trivially derived via
‖(x+ t)− (x+ t0)‖ = ‖t− t0‖ 6

√
3σt.

We call γr the rotation uncertainty radius, and γt
the translation uncertainty radius. They are depicted
in Fig. 4. Note that γr is point-dependent, thus we
use γri to denote the rotation uncertainty radius at xi

and the vector γr to represent all γri. Based on the
uncertainty radii, the bounding functions are derived
in the following section.

4.2 Bounding the L2 Error
Given a rotation cube Cr centered at r0 and a transla-
tion cube Ct centered at t0, we will first derive valid
bounds of the residual ei(R, t) for a single point xi.

The upper bound of ei can be easily chosen by
evaluating the error at any (r, t) ∈ Cr ×Ct. Finding a

γr

O

(a) Rotation uncertainty radius

γt

(b) Translation uncertainty radius

Fig. 4: Uncertainty radii at a point. Left: rotation uncertainty ball
for Cr (in red) with center Rr0x (blue dot) and radius γr . Right:
translation uncertainty ball for Ct (in red) with center x + t0 (blue
dot) and radius γt. In both diagrams, the uncertainty balls enclose
the range of Rrx or x+ t (in green).

suitable lower bound for the L2 error is a harder task.
From Sec. 4.1 we know that, with rotation r ∈ Cr (or,
translation t ∈ Ct), a transformed point xi will lie in
the uncertainty ball centered at Rr0xi (or, xi+t0) with
radius γri (or, γt). For both rotation and translation,
it therefore lies in the uncertainty ball centered at
Rr0xi + t0 with radius γri + γt. Now we need to
consider the smallest residual error that is possible
for xi. We have the following theorem, which is the
cornerstone of the proposed method.

Theorem 2. (Bounds of per-point residuals) For a 3D mo-
tion domain Cr ×Ct centered at (r0, t0) with uncertainty
radii γri and γt, the upper bound ei and the lower bound
ei of the optimal registration error ei(Rr, t) at xi can be
chosen as

ei
.
= ei(Rr0 , t0), (14)

ei
.
= max

(
ei(Rr0 , t0)− (γri+γt), 0

)
. (15)

Proof: The validity of ei is obvious: error ei at
the specific point (r0, t0) must be larger than the
minimal error within the domain, i.e. ei(Rr0 , t0) >
min∀(r,t)∈(Cr×Ct) ei(Rr, t). We now focus on proving
the correctness of ei.

As defined in (2), the model point yj∗ ∈ Y is closest
to (Rrxi + t). Let yj∗0

be the closest model point to
Rr0xi + t0. Observe that, ∀(r, t) ∈ (Cr × Ct),

ei(Rr, t)

=‖Rrxi+t−yj∗‖ (16)
=‖(Rr0xi+t0−yj∗)+ (Rrxi−Rr0xi)+(t−t0)‖ (17)
>‖Rr0xi+t0−yj∗‖−(‖Rrxi−Rr0xi‖+‖t−t0‖) (18)
>‖Rr0xi+t0−yj∗‖−(γri+γt) (19)
>‖Rr0xi+t0−yj∗0

‖−(γri+γt) (20)
=ei(Rr0 , t0)−(γri+γt), (21)

where (17) trivially involves introducing two auxiliary
elements Rr0x and t0, (18) follows from the reverse
triangle inequality1, (19) is based on the uncertainty
radii in (7) and (8), and (20) is from the closest-point

1. |x+ y| = |x− (−y)| > |x| − | − y| = |x| − |y|
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Rr0x+t0

Rrx+t

γ
a

b

c

yj∗

yj∗0

Fig. 5: Deriving the lower bound. Any transformed data point Rrx+t
lies within the uncertainty ball (in yellow) centered at Rr0x+t0 with
radius γ = γr + γt. Model points yj∗ and yj∗0

are closest to Rrx+t
and Rr0x+t0 respectively. It is clear that a ≤ b ≤ c where a = ei
and c = ei(Rr, t). See text for more details.

definition. Note that yj∗ is not fixed, but changes
dynamically as a function of (Rr, t) as defined in (2).

According to the above derivation, the residual
error ei(Rr, t) after perturbing a data point xi by
a 3D rigid motion composed of a rotation r ∈
Cr and a translation t ∈ Ct will be at least
ei(Rr0 , t0)−(γri+γt). Given that a closest point dis-
tance should be non-negative, a valid lower bound
ei for Cr × Ct is max

(
ei(Rr0 , t0) − (γri + γt), 0

)
6

min∀(r,t)∈(Cr×Ct) ei(Rr, t).
The geometric explanation for ei is as follows. Since

yj∗0
is closest to the center Rr0xi+t0 of the uncertainty

ball with radius γ = γri + γt, it is also closest to
the surface of the ball and ei is the closest distance
between point-set Y and the ball. Thus, no matter
where the transformed data point Rrxi+ t lies inside
the ball, its closest distance to point-set Y will be no
less than ei. See Fig. 5 for a geometric illustration.

Summing the squared upper and lower bounds of
per-point residuals in (14) and (15) for all M points,
we get the L2-error bounds in the following corollary.

Corollary 3. (Bounds of L2 error) For a 3D motion
domain Cr×Ct centered at (r0, t0) with uncertainty radii
γri and γt, the upper bound E and the lower bound E of
the optimal L2 registration error E∗ can be chosen as

E
.
=

M∑

i=1

ei
2 =

M∑

i=1

ei(Rr0 ,t0)
2, (22)

E
.
=

M∑

i=1

ei
2 =

M∑

i=1

max
(
ei(Rr0 ,t0)−(γri+γt), 0

)2
.(23)

5 THE GO-ICP ALGORITHM

Now that the domain parametrization and bounding
functions have been specified, we are ready to present
the Go-ICP algorithm concretely.

5.1 Nested BnBs

Given Corollary 3, a direct 6D space BnB (i.e. branch-
ing each 6D cube into 26 = 64 sub-cubes and
bounding errors for them) seems to be straightfor-
ward. However, we find it prohibitively inefficient

and memory consuming, due to the huge number of
6D cubes and point-set transformation operations.

Instead, we propose using a nested BnB search
structure. An outer BnB searches the rotation space of
SO(3) and solves the bounds and corresponding op-
timal translations by calling an inner translation BnB.
In this way, we only need to maintain two queues
with significantly fewer cubes. Moreover, it avoids
redundant point-set rotation operations for each rota-
tion region, and takes the advantage that translation
operations are computationally much cheaper.

The bounds for both the BnBs can be readily de-
rived according to Sec. 4.2. In the outer rotation BnB,
for a rotation cube Cr the bounds can be chosen as

Er = min
∀t∈Ct

∑

i

ei(Rr0 , t)
2, (24)

Er = min
∀t∈Ct

∑

i

max
(
ei(Rr0 , t)− γri, 0

)2
, (25)

where Ct is the initial translation cube. To solve the
lower bound Er in (25) with the inner translation BnB,
the bounds for a translation cube Ct can be chosen as

Et =
∑

i

max
(
ei(Rr0 , t0)− γri, 0

)2
, (26)

Et =
∑

i

max
(
ei(Rr0 , t0)− (γri + γt), 0

)2
. (27)

By setting all the rotation uncertainty radii γri in (26)
and (27) to zero, the translation BnB solves Er in (24).
A detailed description is given in Algorithm 1 and
Algorithm 2.

Search Strategy and Stop Criterion. In both BnBs,
we use a best-first search strategy. Specifically, each
of the BnBs maintains a priority queue; the priority
of a cube is opposite to its lower bound. Once the
difference between so-far-the-best error E∗ and the
lower bound E of current cube is less than a threshold
ε, the BnB stops. Another possible strategy is to set
ε = 0 and terminate the BnBs when the remaining
cubes are sufficiently small.

5.2 Integration with the ICP Algorithm

Lines 9–11 of Algorithm 1 show that whenever the
outer BnB finds a cube Cr that has an upper bound
lower than the current best function value, it will call
conventional ICP, initialized with the center rotation
of Cr and the corresponding best translation.

Figure 6 illustrates the collaborative relationship
between ICP and BnB. Under the guidance of global
BnB, ICP converges into local minima one by one,
with each local minimum having lower error than the
previous one, and ultimately reaches the global mini-
mum. Since ICP monotonically decreases the current-
best error E∗ (cf. [11]), the search path of the local
ICP is confined to un-discarded, promising sub-cubes
with small lower bounds, as illustrated in Fig. 6.
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Algorithm 1: Go-ICP – the Main Algorithm: BnB
search for optimal registration in SE(3)

Input: Data and model points; threshold ε; initial cubes Cr ,Ct.
Output: Globally minimal error E∗ and corresponding r∗, t∗.

1 Put Cr into priority queue Qr .
2 Set E∗ = +∞.
3 loop
4 Read out a cube with lowest lower-bound Er from Qr .
5 Quit the loop if E∗−Er<ε.
6 Divide the cube into 8 sub-cubes.
7 foreach sub-cube Cr do
8 Compute Er for Cr and corresponding optimal t by

calling Algorithm 2 with r0, zero uncertainty radii,
and E∗.

9 if Er < E∗ then
10 Run ICP with the initialization (r0, t).
11 Update E∗, r∗, and t∗ with the results of ICP.
12 end
13 Compute Er for Cr by calling Algorithm 2 with r0,

γr and E∗.
14 if Er > E∗ then
15 Discard Cr and continue the loop;
16 end
17 Put Cr into Qr .
18 end
19 end

Algorithm 2: BnB search for optimal translation
given rotation

Input: Data and model points; threshold ε; initial cube Ct;
rotation r0; rotation uncertainty radii γr ,
so-far-the-best error E∗.

Output: Minimal error E∗
t and corresponding t∗.

1 Put Ct into priority queue Qt.
2 Set E∗

t = E∗.
3 loop
4 Read out a cube with lowest lower-bound Et from Qt.
5 Quit the loop if E∗

t −Et<ε.
6 Divide the cube into 8 sub-cubes.
7 foreach sub-cube Ct do
8 Compute Et for Ct by (26) with r0,t0 and γr .
9 if Et < E∗

t then
10 Update E∗

t = Et, t∗ = t0.
11 end
12 Compute Et for Ct by (27) with r0,t0,γr and γt.
13 if Et > E∗

t then
14 Discard Ct and continue the loop.
15 end
16 Put Ct into Qt.
17 end
18 end

In this way, the global BnB search and the local
ICP search are intimately integrated in the proposed
method. The former helps the latter jump out of local
minima and guides the latter’s next search; the latter
accelerates the former’s convergence by refining the
upper bound, hence improving the efficiency.

5.3 Outlier Handling with Trimming

In statistics, trimming is a strategy to obtain a more
robust statistic by excluding some of the extreme
values. It is used in Trimmed ICP [60] for robust point-
set registration. Specifically, in each iteration, only a
subset S of the data points that have the smallest

ICP

ICP

ICP

BnB

BnB
 

Fig. 6: Collaboration of BnB and ICP. Left: BnB and ICP collabo-
ratively update the upper bounds during the search process. Right:
with the guidance of BnB, ICP only explores un-discarded, promising
cubes with small lower bounds marked up by BnB.

closest distances are used for motion computation.
Therefore, the registration error will be

ETr =
∑

i∈S
ei(R, t)

2. (28)

To robustify our method with trimming, it is necessary
to derive new upper and lower bounds of (28). We
have the following result.

Corollary 4. (Bounds of the trimmed L2 error) The upper
bound ETr and lower bound ETr of the registration error
with trimming for the domain Cr × Ct can be chosen as

ETr .
=
∑

i∈P
ei

2, (29)

ETr .
=
∑

i∈Q
ei

2. (30)

where ei, ei are bounds of the per-point residuals defined
in (14), (15) respectively, and P , Q are the trimmed point-
sets having smallest values of ei, ei respectively, with
|P| = |Q| = |S| = K.

Proof: The upper bound in (29) is chosen trivially. To
see the validity of the lower bound in (30), observe
that ∀(r, t) ∈ Cr × Ct,

ETr =
∑

i∈Q
ei

2 ≤
∑

i∈S
ei

2 ≤
∑

i∈S
ei(Rr, t)

2 = ETr. (31)

Based on this corollary, the corresponding bounds
in the nested BnB can be readily derived. As proved
in [60], iterations of Trimmed ICP decrease the regis-
tration error monotonically to a local minimum. Thus
it can be directly integrated into the BnB procedure.

Fast Trimming. A straightforward yet inefficient way
to do trimming is to sort the residuals outright and
use the K smallest ones. In this paper, we employ the
Introspective Selection algorithm [64] which has O(N)
performance in both the worst case and average case.

Other Robust Extensions. In the same spirit as trim-
ming, other ICP variants such as [59], [65] can be
handled. The method can also be adapted to LM-
ICP [16], where the new lower-bound is simply a
robust kernelized version of the current one. It may
also be extended to ICP variants with Lp-norms [66],
such as the robustness-promoting L1-norm.
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Fig. 7: Remaining cubes of the BnBs. The first five figures show the remaining cubes in the rotation π-ball of the rotation BnBs, for an irregular
tetrahedron, a cuboid with three different side-lengths, a regular tetrahedron, a regular cube, and a regular octahedron respectively. The last
figure shows a typical example of remaining cubes of a translation BnB, for the irregular tetrahedron. (Best viewed when zoomed in)
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Fig. 8: A clustered scene (black circles) and the registration results
of Go-ICP for the five shapes.

6 EXPERIMENTS

We implemented the method2 in C++ and tested it on
a standard PC with an Intel i7 3.4GHz CPU. In the
experiments reported below, the point-sets were pre-
normalized such that all the points were within the
domain of [−1, 1]3. Although the goal was to minimize
the L2 error in (1), the root-mean-square (RMS) error
is reported for better comprehension.

Closest-point distance computation. To speed up the
closest distance computation, a kd-tree data structure
can be used. We also provide an alternative solution
that is used more often in the experiments – a 3D
Euclidean Distance Transform (DT) [16] used to com-
pute closest distances for fast bound evaluation3. A
DT approximates the closest-point distances in the
real-valued space by distances of uniform grids, and
pre-computes them for constant-time retrieval (details
about our DT implementation can be found in the
supplementary material). Despite the DT can intro-
duce approximation errors thus the convergence gap
may not be exactly ε, in the following experiments our
method works very well with a 300×300×300 DT for
optimal registration. Naturally, higher resolutions can
be used when necessary.

2. Source code and demo can be found on the author’s webpage.
3. Local ICP is called infrequently so we simply use a kd-tree

for it. The refined upper-bounds from the found ICP solutions are
evaluated via the DT for consistency.

Fig. 9: Remaining rotation domains of the outer rotation BnB on 2D
slices of the π-ball, for the synthetic points. Results using the DT
and the kd-tree are within magenta and green polygons, respectively.
The white dots denote optimal rotations. From left to right: a cuboid,
a regular tetrahedron and a regular cube. The colors on the slices
indicate registration errors evaluated via inner translation BnB: red
for high error and blue for low error. (Best viewed when zoomed in)

6.1 Optimality

To verify the correctness of the derived bounds and
the optimality of Go-ICP, we first use a convergence
condition similar to [63] for the BnBs. Specifically, we
set the the threshold of a BnB to be 0, and specify a
smallest cube size at which the BnB stops dividing a
cube. In this way, we can examine the uncertainty in
the parameter space after the BnB stops. Both the DT
and kd-tree are tested in these experiments.

Synthetic Points. We first tested the method on a
synthetically generated scene with simple objects.
Specifically, five 3D shapes were created: an irregu-
lar tetrahedron, a cuboid with three different side-
lengths, a regular tetrahedron, a regular cube, and
a regular octahedron. Note that the latter 4 shapes
have self-symmetries. All the shapes were then placed
together, each with a random transformation, to gen-
erate clustered scenes. Zero-mean Gaussian noise with
standard deviation σ = 0.01 was added to the scene
points. We created such a scene as shown in Figure 8,
and applied Go-ICP to register the vertices of each
shape to the scene points.

To test the rotation BnB, we set the parameter do-
main to be [−π, π]3× [−1, 1]3 and the minimal volume
of a rotation cube to 1.5E−5 (∼1 degree uncertainty).
The lower bound of a rotation cube was set to be
the global lower bound of the invoked translation
BnB. Thus the threshold of translation BnB is not very
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Error:

BnB ICP BnB ICP BnB ICP

0.255 0.079 0.076 0.053    0.045    0.008

Fig. 10: Evolution of Go-ICP registration for the bunny dataset. The model point-set and data point-set are shown in red and green
respectively. BnB and ICP collaboratively update the registration: ICP refines the solution found by BnB and BnB guides ICP into the
convergence basins of multiple local minima with increasingly lower registration errors.
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Fig. 11: Evolution of the bounds (left) and cubes (right) in the rotation
BnB with a DT on the bunny point-sets. See text for details.

important and we set it to a small value (0.0001×N
where N is the data point number). The initial errors
E∗t of translation BnBs were set to infinity.

In all tests, Go-ICP produced correct results with
both the DT and kd-tree. The remaining rotation cubes
using the DT and kd-tree respectively are almost visu-
ally indistinguishable, and Figure 7 shows the results
using the DT. It is interesting to see that the remaining
cubes formed 1 cluster for the irregular tetrahedron,
4 clusters for the cuboid, 12 clusters for the regular
tetrahedron, and 24 clusters for the regular cube and
octahedron. These results conform to the geometric
properties of these shapes, and validated the derived
bounds. Investigating shape self-similarity would be
a practical application of the algorithm.

Moreover, Figure 9 shows some typical remaining
rotation domains on 2D slices of the rotation π-ball4.
The non-convexity of the problem can be clearly seen
from the presence of many local minima. It can also
been seen that the remaining rotation domains using a
DT and kd-tree are highly consistent, and the optima
are well contained by them.

The translation BnB can be easily verified by run-
ning it with rotations picked from the remaining
rotation cubes. The threshold was set to be 0, and the
minimal side-length of a translation cube was set to
be 0.01. The last figure of Fig. 7 shows a typical result.

More results of remaining rotation and translation
cubes can be found in the supplementary material.

Real Data. Similar experiments were conducted on
real data. We applied our method to register a bunny

4. We chose the slices passing two randomly-selected optimal
rotations plus the origin. Due to shape symmetry there may exist
more than two optimal rotations on one slice.

Fig. 12: Remaining rotation domains of the outer rotation BnB on 2D
slices of the π-ball, for the bunny point-sets. The three slices pass
through the optimal rotation and the X-, Y-, Z-axes respectively. See
also the caption of Fig. 9. (Best viewed when zoomed in)

scan bun090 from the Stanford 3D dataset5 to the
reconstructed model. Since model and data point-sets
are of similar spatial extents, we set the parameter
domain to be [−π, π]3 × [−0.5, 0.5]3 which is large
enough to contain the optimal solution. We randomly
sampled 500 data points, and did similar tests to those
on the synthetic points. The translation BnB threshold
was set to 0.001×N , and the remaining rotation cubes
from the outer rotation BnB were similar to the first
figure in Fig. 7 (i.e., one cube cluster). Figure 12 shows
the results on three slices of the rotation π-ball.

Additionally, we recorded the bound and cube evo-
lutions in the rotation BnB which are presented in
Fig. 11. It can be seen that BnB and ICP collaboratively
update the global upper bound. Corresponding trans-
formations for each global upper bound found by BnB
and ICP are shown in Fig. 10. Note that in the fourth
image the pose has been very close to the optimal one,
which indicates that ICP may fail even if reasonably
good initialization is given.

Although the convergence condition used in this
section worked successfully, we found that using a
small threshold ε of the bounds to terminate a BnB
also works well in practice. It is more efficient and
produces satisfactory results. In the following experi-
ments, we used this strategy for the BnBs.

6.2 “Partial” to “Full” Registration
In this section, we test the performance of Go-ICP
by registering partially scanned point clouds to ful-
l 3D model point clouds. The bunny and dragon

5. http://graphics.stanford.edu/data/3Dscanrep/
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Fig. 13: Running time of the Go-ICP method with DTs on the bunny and dragon point-sets with respect to different factors. The evaluation
was conducted on 10 data point-sets with 100 random poses (i.e., 1 000 pairwise registrations).
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Fig. 14: Running time histograms of Go-ICP with DTs for the bunny
(left) and dragon (right) point-sets.

models from the Stanford 3D dataset were used for
evaluation. All 10 partial scans of the bunny dataset
were used as data point-sets. For the dragon model,
we selected 10 scans generated from different view
points as data point-sets. The reconstructed bunny
and dragon models were used as model point-sets.

For each of these 20 scans, we first performed 100
tests with random initial rotations and translations.
The transformation domain to explore for Go-ICP was
set to be [−π, π]3×[−0.5, 0.5]3. We sampled N = 1000
data points from each scan, and set the convergence
threshold ε to be 0.001×N .

As expected, Go-ICP achieved 100% correct registra-
tion on all the 2 000 registration tasks on the bunny
and dragon models, with both the DT and kd-tree.
All rotation errors were less than 2 degrees and all
translation errors were less than 0.01. With a DT, the
mean/longest running times of Go-ICP, in the 1 000
tests on 1 000 data points and 20 000–40 000 model
points, were 1.6s/22.3s for bunny and 1.5s/28.9s for
dragon. Figure 14 shows the running time histograms
The running times with a kd-tree were typically 40–
50 times longer than that with the DT. The solutions
from using the DT and the kd-tree respectively were
highly consistent (the largest rotation difference was
below 1 degree). See the supplementary material for
detailed result and running time comparisons for the
DT and the kd-tree.

We then analyzed the running time of the proposed
method under various settings using the DT. We
analyzed the influence of each factor by varying it
while keeping others fixed. Default factor settings:
number of data points N =1000, no added Gaussian
noise (i.e. standard deviation σ=0) and convergence
threshold ε=0.001×N .

σ = 0.01 σ = 0.02 σ = 0.03

Fig. 15: Registration with different levels of Gaussian noise.

Effect of Number of Points. In this experiment, the
running time was tested for different numbers of
points. Since the DT was used for closest-point dis-
tance retrieval, the number of model points does not
significantly affect the speed of our method. To test
the running time with respect to different numbers of
data points, we randomly sampled the data point-set.
As presented in Fig. 13, the running time manifested a
linear trend since closest-point distance retrieval was
O(1) and the convergence threshold varied linearly
with the number of data points.

Effect of Noise. We examined how the noise level
impacted the running time by adding Gaussian noise
to both the data and model point-sets. The registration
results on the corrupted bunny point-sets are shown
in Fig. 15. We found that, as shown in Fig. 13, the
running time decreased as the noise level increased
(until σ = 0.02). This is because the Gaussian noise
(especially that added to the model points) smoothed
out the function landscape and widened the conver-
gence basin of the global minimum, which made it
easier for Go-ICP to find a good solution.

Effect of Convergence Threshold. We further inves-
tigated the running time with respect to the conver-
gence threshold of the BnB loops. We set the threshold
ε to depend linearly on N , since the registration
error is a sum over the N data points. Figure 13
shows that the smaller the threshold is, the slower our
method performs. In our experiments, ε = 0.001×N
was adequate to get a 100% success rate for the
bunny and dragon point-sets. For cases when the local
minima are small or close to the global minimum, the
threshold can be set smaller.
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Fig. 16: Registration with partial overlap. Go-ICP with the trimming strategy successfully registered the 10 point-set pairs with 100 random
relative poses for each of them. The point-sets in red and blue are denoted as point-setA and point-setB, respectively. The trimming settings
and running times are presented in Table 1.

Fig. 17: Registration with high optimal error. Left: Gaussian noise
was added to the data point-set to increase the RMS error. Right:
the global minimum was found at about 25s with a DT; the remainder
of the time was devoted solely to increasing the lower bound.

Effect of Optimal Error. We also tested the running
time w.r.t. the optimal registration error. To increase
the error, Gaussian noise was added to the data
point-set only. As shown in Fig. 13, the running
time remained almost constant when the RMS error
was less than 0.03. This is because the gap between
the global lower bound and the optimal error was
less than ε. Therefore, the running time depended
primarily on when the global minimum was found,
that is, the termination depended on the decrease of
the upper bound. However, it takes longer to converge
if the final RMS error is higher. Figure 17 shows
the bounds evolution for bunny when the RMS error
was increased to ∼ 0.04. As can be seen, the global
minimum was found at about 25s, with the remainder
of the time devoted to increasing the lower bound.

6.3 Registration with Partial Overlap

In this section, we tested the proposed method on
partially overlapping point-sets. The data points in
regions that are not overlapped by the other model
point-set should be treated as outliers, as their corre-
spondences are missing. Trimming was employed to
deal with outliers as described in Sec. 5.3;

TABLE 1: Running time (in seconds) of Go-ICP with DTs for the
registration of the partially overlapping point-sets in Fig. 16. 100
random relative poses were tested for each point-set pair and 1 000
data points were used. ρ is the trimming percentage.

.

A→B B→A
ρ mean/max time ρ mean/max time

Bunny 10% 0.81 / 10.7 10% 0.49 / 7.25
Dragon 20% 2.99 / 43.5 40% 8.72 / 72.4
Buddha 10% 0.71 / 11.3 10% 0.60 / 14.8
Chef 20% 0.45 / 4.47 30% 0.52 / 3.79
Dinosaur 10% 2.03 / 23.5 10% 1.65 / 26.1
Owl 40% 12.5 / 87.5 40% 13.4 / 75.0
Denture 30% 6.74 / 74.7 30% 4.24 / 68.1
Room 30% 9.82 / 73.3 30% 18.4 /107.3
Bowl 20% 3.19 / 20.3 30% 3.52 / 25.3
Loom 30% 8.64 / 67.2 20% 5.96 / 44.6

We used 10 point-set pairs shown in Fig. 16 to test
Go-ICP with trimming. These point-sets were gener-
ated by different scanners and with different noise
levels. The bunny, dragon and buddha models are
from the Standford 3D dataset. The chef and dinosaur
models are from [67]. The denture was generated
with a structured light 3D scanner6. The owl status
is from [66] and the room scans are from [68]. The
bowl and loom point-sets were collected by us with
a Kinect. The overlapping ratio of the point-set pairs
are between 50%∼95%.

For each of the 10 point-set pairs, we generated 100
random relative poses, and registered the two point-
sets to each other. This lead to 2 000 registration tasks.
The translation domain to explore for Go-ICP was set
to be [−π, π]3 × [−0.5, 0.5]3. We chose the trimming
percentages ρ as in Table 1, sampled N = 1000 data
points for each registration, and set all the conver-
gence thresholds to ε=0.001×K where K = (1−ρ)×N .
Our method correctly registered the point-sets in all
these tasks. All the rotation errors were less than 5

6. http://www.david-3d.com/en/support/downloads
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Fig. 18: Camera localization experiment. Left: 5 (out of 100) color and depth image pairs of the scene. (The color images were not used)
Right: Corresponding registration results. Note that the scene contains many similar structures, and the depth images only cover small
portions of the scene, which make the 3D registration tasks very challenging.

degrees and translation errors were less than 0.05
compared to the manually-set ground truths. The
running times using DTs are presented in Table 1. In
general, it takes the method a longer time compared
to the outlier-free case due to 1) the emergence of
additional local minima induced by the outliers and
2) the time-consuming trimming operations.

Choosing trimming percentages. In these experi-
ments, each parameter ρ was chosen by visually ob-
serving the two point-sets and roughly guessing their
non-overlapping ratios. The results were not very
sensitive to ρ (e.g. setting ρ as 5%, 10% and 20% all led
to a successfully registration for bunny). If no rough
guess is available, one can gradually increase ρ until
a measure such as the inlier number or RMS error
attains a set value, or apply the automatic overlap
estimation proposed in [62]. We also plan to test other
outlier handling strategies (cf. Sec. 5.3) in future.

6.4 More Applications

In this section, we present several additional scenar-
ios where Go-ICP can be applied to achieve global
optimality. Future efforts can be taken to extend the
method and build complete real-world systems. In the
following experiments, the transformation domain for
exploration was set to be [−π, π]3 × [−1, 1]3.

3D Object Localization. The proposed method is use-
ful for model-based 3D object detection, localization
and pose estimation from relatively large scenes. To
experimentally verify this, we tested our method on
one sequence of the camera localization dataset [68].
Figure 18 shows a sample color and depth image pair,
and a 3D model of the office scene. Our goal was
to estimate the camera poses by registering the point
clouds of the depth images onto the 3D scene model.
We evenly sampled the sequence taken by a smoothly
moving camera to 100 depth images. Each depth im-
age was then sampled to 400 ∼ 600 points. We set our
method to seek a solution with the registration error
smaller than 0.0001×N , and the method registered
the 100 point-sets with the mean/longest running
time of 32s/178s using a DT. The rotation errors and
translation errors were all below 5 degrees and 10cm.
Figure 18 shows 5 typical registration results.

Fig. 19: 3D object localization experiment. Left: a labelled object and
its depth image to generate the data point-set. Middle: a scene depth
image to generate the model point-set. Right: the registration result.

Fig. 20: RGB-D extrinsic calibration experiment. Left: the color
image with extracted line segments for single view 3D reconstruction.
Middle: the initial 3D registration (in green), the result of ICP (in
cyan) and the result of Go-ICP (in blue) (the lines are for visualization
purposes only). Right: the depth image with a projection of the
registered 3D points from ICP (in cyan) and Go-ICP (in blue).

We then used the RGB-D Object Dataset [69], with
the goal of registering the points of a baseball cap to
a point cloud of the scene, as shown in Fig. 19. We
sampled N =100 points from the cap model, and set
the trimming percentage and threshold to be ρ=10%
and ε=0.00003×K respectively. Go-ICP successfully
localized the cap in 42 seconds with a DT.

Camera Extrinsic Calibration. In the work of Yang
et al. [9], the sparse point-set from a color camera,
obtained by single view 3D reconstruction, was regis-
tered onto the dense point-set from a depth camera to
obtain the camera relative pose. Figure 20 shows an
example where 12 points are reconstructed. We found
that ICP often failed to find the correct registration
when the pose difference between the cameras was
reasonably large. To the best of our knowledge, few
methods can perform such sparse-to-dense registration
reliably without human intervention, due to the diffi-
culty of building putative correspondences. Setting ε
to be 0.00001×N , Go-ICP with a DT found the optimal
solution in less than 1s. Note that the surfaces are not
exactly perpendicular to each other.
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7 CONCLUSION

We have introduced a globally optimal solution to
Euclidean registration in 3D, under the L2-norm
closest-point error metric originally defined in ICP.
The method is based on the Branch-and-Bound (BnB)
algorithm, thus global optimality is guaranteed re-
gardless of the initialization. The key innovation is
the derivation of registration error bounds based on
the SE(3) geometry.

The proposed Go-ICP algorithm is especially useful
when an exactly optimal solution is highly desired or
when a good initialization is not reliably available. For
practical scenarios where real-time performance is not
critical, the algorithm can be readily applied or used
as an optimality benchmark.
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