
APPENDIX: DETAILS ABOUT THE DISTANCE TRANSFORM

To speed up the closest-point distance computation, 3D Euclidean Distance Transform
(DT) can be used in the proposed method. A DT is a uniform discretization of a bounded
space, where the distances in the real-valued space are approximated by the grid distances
in the discretized space. Each grid cell stores the closest distance to the “model grid”, i.e.
the discretized model points. In this way, the closest-point distances of the data points
to the model point-set can be approximated by the grid distances and retrieved in O(1)
time. Figure I illustrates the use of a 3D DT.

3D Space Closest distances

Figure I: Illustration of a 3D Euclidean Distance Transform. Left: the 3D space with a
dragon model from the Standford 3D dataset. Right: distance values on the XY and
Y Z planes of the 3D DT grid (white for large distances and black for small distances).

In the following section, we present the implementation details of our instantiation of
the DT, and show more experimental results and comparisons with a kd-tree.

Implementation Details

DT Construction. The Euclidean distance transform can be built sequentially or in
parallel [1]. Following [2] we use a simple sequential method to construct a DT. Our DT
construction procedure can be summarized as the following two steps:

• Initialization. Set the closest distance values of the grid cells containing any
model point to zero; set the values of other grid cells to infinity.

• Propagation. Propagate the grid cell values to their neighbouring grid cells.
Forward and backward propagations are run sequentially until stable.

Details of the construction algorithm are given as follows. The goal of DT construction
is to build a 3D array D where D(x, y, z) stores the distance from grid cell (x, y, z) to
its closest model grid cell, say (x′, y′, z′). We also build auxiliary data structures D1,
D2 and D3 where D1(x, y, z), D2(x, y, z) and D3(x, y, z) store the distances from (x, y, z)
to (x′, y′, z′) in the x-, y-, and z-dimensions respectively. During initialization, we set
D(x, y, z) = D1(x, y, z) = D2(x, y, z) = D3(x, y, z) = 0 if (x, y, z) is a model grid cell, i.e.

1

Preprint of accepted paper; contents may be subject to change

if it contains any real-valued model point; otherwise they are set to infinity. The closest
distances will then be propagated from the zero-distance set to the whole DT space in a
sequential manner. Specifically, forward propagations are executed along arrays D1, D2,
D3 and D followed by backward propagations in the reverse order; during propagation,
grid cell values of (x, y, z) are updated using the grid cell values of its neighbouring grid
cells via the following equations:

(i∗, j∗, k∗) = argmin
i,j,k∈{−1,0,1}

(
D1(x+i, y, z)+|i|

)2
+
(
D2(x, y+j, z)+|j|

)2
+
(
D3(x, y, z+k)+|k|

)2
,

D1(x, y, z) ← D1(x+i∗, y, z) + |i∗|,
D2(x, y, z) ← D2(x, y+j∗, z) + |j∗|,
D3(x, y, z) ← D3(x, y, z+k∗) + |k∗|,
D(x, y, z) ←

√
D1(x, y, z)2 +D3(x, y, z)2 +D3(x, y, z)2.

In our experiments, constructing a DT described above with a 300×300×300 grid
takes about 20 seconds. Naturally, a higher resolution can be used and a DT can be built
extremely quickly, especially with modern processors [3, 4].

Expanded DT Space. In our experiments, the point-sets are normalized to be within
[−1, 1]3. Specifically, we first centralize the model and data point clouds independently
to the origin, then scale them simultaneously to be within [−1, 1]3. However, the DT is
built upon a space larger than [−1, 1]3 similar to [2]. An “expansion factor” s is used such
that the DT is built on [−s, s]3. Since all the points are within [−1, 1]3, the out-of-bound
issue can be easily avoided by setting s > 1+2

√
3 (see Figure II left). We have tried such

a large DT space; however, in practice we found it very wasteful. Since the model and
data point-sets are well centralized, we found an expansion factor s = 2 suffices for the
registration task when they are of similar spatial extensions. When the model point-set
has a much larger spatial extension (e.g. the experiments in Sec. 6.3), an even smaller
expansion factor such as s = 1.5 can be used. If a data point x falls outside of the DT
space, its closest-point distance is set to be the closest-point distance of x’s nearest DT
boundary point y, plus ‖x− y‖.

-1 1

1

-1

DT Volume

-1 1

1

-1

2

-2

2-2

DT Volume

Figure II: Illustration of a Distance Transform with expansion factors (in 2D). Left:
expansion factor = 1+2

√
2 (accordingly, 1+2

√
3 in 3D). Right: expansion factor = 2.

2

Preprint of accepted paper; contents may be subject to change

More Results and Comparisons to Kd-tree1

In Sec. 6.1 of the main paper, we conducted experiments to show the remaining rotation
and translation domains after BnB stops. Both synthetic points and real range data were
used. Figure III shows typical remaining rotation domains on 2D slices of the rotation π-
ball2 for the synthetic points, and Figure IV shows typical remaining translation domains
on three 2D slices of the [−1, 1]3 cube3 for these. It can be seen that the remaining domains
from the 300×300×300 DT and the kd-tree are highly consistent. The differences between
them are insignificant, especially considering they are well within the convergence basins
of the optima, and the optima are well-contained by them. Figure V and Figure VI show
the results for the bunny data and the dragon data we also tested. Again, the remaining
domains from the DT and kd-tree were highly consistent; the differences being almost
negligible.

In Sec. 6.2 of the main paper, running times of the proposed method were analyzed
with “partial” to “full” registration experiments. We used 10 partial scans of the bunny
and dragon datasets as data point-sets and their reconstructed models as the model
point-sets. In the first experiment, we performed 100 tests with random initial rotations
and translations, for each data point-set. As expected, Go-ICP achieved 100% correct
registration on all the registration tasks, with both the DT and kd-tree. The comparisons
of results using the DT and the kd-tree are presented in Figure VII and Figure VIII. It
can be seen that, the rotation differences and the translation differences are all below 1
degree and 0.01, respectively.

References

[1] C. R. Maurer Jr, R. Qi, and V. Raghavan, “A linear time algorithm for computing
exact euclidean distance transforms of binary images in arbitrary dimensions,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 2, pp. 265–270, 2003.

[2] A. Fitzgibbon, “Robust registration of 2D and 3D point sets,” Image and Vision
Computing, vol. 21, no. 13, pp. 1145–1153, 2003.

[3] Y.-R. Wang and S.-J. Horng, “An O(1) time algorithm for the 3D euclidean distance
transform on the CRCW PRAM model,” IEEE Trans. Parallel and Distributed Sys-
tems, vol. 14, no. 10, pp. 973–982, 2003.

[4] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan, “Parallel banding algorithm to
compute exact distance transform with the GPU,” Pro. ACM SIGGRAPH Symp.
Interactive 3D Graphics and Games, pp. 83–90, 2010.

[5] M. Muja and D. Lowe, “Scalable nearest neighbour algorithms for high dimensional
data,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 36, pp. 2227–
2240, 2014.

1A kd-tree implementation from the FLANN library [5] was used.
2The 2D π-slices were chosen as follows. For the irregular tetrahedron data where only one optimal

solution exists, we use 3 slices passing through the optimal solution and X-, Y-, Z-axes respectively. For
other data where multiple optimal solutions exist, we chose 3 slices where each slice passes two randomly-
selected optimal solutions plus the origin (due to shape symmetry there exists multiple optimal solutions).

3The three 2D slices of the [−1, 1]3 cube were chosen such that they pass the optimal solution and are
parallel to the XY-, YZ- and XZ-planes respectively.

3

Preprint of accepted paper; contents may be subject to change

Figure III: The remaining rotation domains (on 2D slices of the π-ball) of the outer
rotation BnB using a 300×300×300 DT (within magenta polygons) and a kd-tree
(within green polygons) for the synthetic points. From top to bottom: an irregular
tetrahedron, a cuboid with three different side-lengths, a regular tetrahedron, a regular
cube, and a regular octahedron. The white dots denote optimal solutions. The colors
indicate registration errors evaluated via inner translation BnB with rotations on these
slices (red for high error and blue for low error). Best viewed on screen with zoom.

4

Preprint of accepted paper; contents may be subject to change

Figure IV: The remaining translation domains (on 2D slices of the [−1, 1]3 cube) of the
inner translation BnB, using a 300×300×300 DT (within magenta polygons) and
a kd-tree (within green polygons) for the synthetic points. From top to bottom: an
irregular tetrahedron, a cuboid with three different side-lengths, a regular tetrahedron, a
regular cube, and a regular octahedron. The white dots denote optimal solutions. The
error maps contain only a handful of local minima partially because optimal rotations
were used. Best viewed on screen with zoom.

5

Preprint of accepted paper; contents may be subject to change

Figure V: The remaining rotation domains (on 2D slices of the π-ball) of the outer ro-
tation BnB using a 300×300×300 DT (within magenta polygons) and a kd-tree
(within green polygons) for bunny (first row) and dragon (second row) data. The
white dots denote optimal solutions. The error maps on the slices were computed via
inner translation BnB. Best viewed on screen with zoom.

Figure VI: The remaining translation domains (on 2D slices of the [−0.5, 0.5]3 cube) of
the inner translation BnB, using a 300×300×300 DT (within magenta polygons)
and a kd-tree (within green polygons) for bunny (first row) and dragon (second row)
data. The white dots denote optimal solutions. Best viewed on screen with zoom.

6

Preprint of accepted paper; contents may be subject to change

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

#Experiment

R
ot

at
io

n
di

ffe
re

nc
e

(d
eg

)

0 200 400 600 800 1000
0

2

4

6
x 10

−3

#Experiment

T
ra

ns
la

tio
n

di
ffe

re
nc

e

Figure VII: Comparison of the obtained solutions using a DT and a kd-tree on the bunny
data (10 data point-sets with 100 random poses).

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

#Experiment

R
ot

at
io

n
di

ffe
re

nc
e

(d
eg

)

0 200 400 600 800 1000
0

1

2

3
x 10

−3

#Experiment

T
ra

ns
la

tio
n

di
ffe

re
nc

e

Figure VIII: Comparison of the obtained solutions using a DT and a kd-tree on the dragon
data (10 data point-sets with 100 random poses).

7

Preprint of accepted paper; contents may be subject to change

