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Abstract

3D object reconstruction is a fundamental task of many
robotics and AI problems. With the aid of deep convolutional
neural networks (CNNs), 3D object reconstruction has wit-
nessed a significant progress in recent years. However, possi-
bly due to the prohibitively high dimension of the 3D object
space, the results from deep CNNs are often prone to miss-
ing some shape details. In this paper, we present an approach
which aims to preserve more shape details and improve the
reconstruction quality. The key idea of our method is to lever-
age object mask and pose estimation from CNNs to assist
the 3D shape learning by constructing a probabilistic single-
view visual hull inside of the network. Our method works by
first predicting a coarse shape as well as the object pose and
silhouette using CNNs, followed by a novel 3D refinement
CNN which refines the coarse shapes using the constructed
probabilistic visual hulls. Experiment on both synthetic data
and real images show that embedding a single-view visual
hull for shape refinement can significantly improve the re-
construction quality by recovering more shapes details and
improving shape consistency with the input image.

Introduction
Recovering the dense 3D shapes of objects from 2D im-
ageries is a fundamental AI problem which has many appli-
cations such as robot-environment interaction, 3D-based ob-
ject retrieval, recognition and functionality estimate (Wang,
Liang, and Yu 2017; Zhu, Zhao, and Zhu 2015; Liang et
al. 2016), etc. Given a single image of an object, a human
can reason the 3D structure of the object reliably. However,
single-view 3D object reconstruction is very challenging for
computer algorithms.

Recently, a significant progress of single-view 3D recon-
struction has been achieved by using deep convolutional
neural networks (CNNs) (Choy et al. 2016; Girdhar et al.
2016; Wu et al. 2016; Yan et al. 2016; Fan, Su, and Guibas
2017; Tulsiani et al. 2017b; Zhu et al. 2017; Wu et al. 2017;
Tulsiani, Efros, and Malik 2018). Most CNN-based meth-
ods reconstruct the object shapes using 2D and 3D convo-
lutions in a 2D encoder-3D decoder structure with the volu-
metric 3D representation. The input to these CNNs are ob-
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Figure 1: Some results reconstructed from synthetic data and
real data by the baseline approach (Choy et al. 2016), Marr-
Net (Wu et al. 2017) and our approach on the chair category.
Note the inconsistency with input images and missing parts
in the results of the former two methods.

ject images taken under unknown viewpoints, while the out-
put shapes are often aligned with the canonical viewpoint in
a single, pre-defined 3D coordinate system such that shape
regression is more tractable.

Although promising results have been shown by these
CNN-based methods, single-view 3D reconstruction is still
a challenging problem and the results are far from being per-
fect. One of the main difficulties lies in the object shape
variations which can be very large even in a same object
category. The appearance variations in the input images
caused by pose differences make this task even harder. Con-
sequently, the results from CNN-based methods are prone to
missing some shape details and sometimes generate plausi-
ble shapes which, however, are inconsistent with input im-
ages, as shown in Figure 1.

In this paper, we propose an approach to improve the fi-
delity of the reconstructed shapes by CNNs. Our method
combined traditional wisdom into the network architecture.
It is motivated by two observations: 1) while directly recov-
ering all the shape details in 3D is difficult, extracting the
projected shape silhouette on the 2D plane, i.e. segmenting
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Figure 2: An overview of the proposed method. Given an
input image, we first use CNNs to predict a coarse 3D vol-
umetric shape, the silhouette and the object pose. The latter
two are used to construct a single-view visual hull, which is
used to refine the coarse shape using another CNN.

out the object from background in a relatively easy task us-
ing CNNs; 2) for some common objects such as chairs and
cars whose 3D coordinate systems are well defined with-
out ambiguity, the object pose (or equivalently, the view-
point) can also be well estimated by a CNN (Su et al. 2015;
Massa, Marlet, and Aubry 2016). As such, we propose to
leverage the object silhouettes to assist the 3D learning by
lifting them to 3D using pose estimates.

Figure 2 is a schematic description of our method, which
is a pure GPU-friendly neural network solution. Specifically,
we embed into the network a single-view visual hull us-
ing the estimated object silhouettes and poses. Embedding
a visual hull can help recover more shape details by consid-
ering the projection relationship between the reconstructed
3D shape and the 2D silhouette. Since both the pose and
segmentation are subject to estimation error, we opted for
a “soft” visual-hull embedding strategy: we first predict a
coarse 3D shape using a CNN, then employ another CNN to
refine the coarse shape with the constructed visual hull. We
propose a probabilistic single-view visual hull (PSVH) con-
struction layer which is differentiable such that the whole
network can be trained end-to-end.

In summary, we present a novel CNN-based approach
which uses a single-view visual hull to improve the qual-
ity of shape predictions. Through our method, the perspec-
tive geometry is seamlessly embedded into a deep network.
We evaluate our method on synthetic data and real images,
and demonstrate that using a single-view visual hull can sig-
nificantly improve the reconstruction quality by recovering
more shape details and improving shape consistency with
input images.

Related Work
Traditional methods. Reconstructing a dense 3D object
shape from a single image is an ill-posed problem. Tradi-
tional methods resort to geometry priors for the otherwise
prohibitively challenging task. For example, some meth-
ods leveraged pre-defined CAD models (Sun et al. 2013).
Category-specific reconstruction methods (Vicente et al.
2014; Kar et al. 2015; Tulsiani et al. 2017a) reconstruct a

3D shape template from images of the objects in the same
category as shape prior. Given an input image, these meth-
ods estimate silhouette and viewpoint from the input image
and then reconstruct 3D object shape by fitting the shape
template to the estimated visual hull. Our method integrates
the single-view visual hull with deep neural network for re-
constructing 3D shape from single image.
Deep learning for 3D reconstruction. Deep learning based
methods directly learn the mapping from 2D image to a
dense 3D shape from training data. For example, (Choy et
al. 2016) directly trained a network with 3D shape loss. (Yan
et al. 2016) trained a network by minimizing the difference
between the silhouette of the predicted 3D shape and ground
truth silhouette on multiple views. A ray consistency loss is
proposed in (Tulsiani et al. 2017b) which uses other types
of multi-view observations for training such as depth, color
and semantics. (Wu et al. 2017) applied CNNs to first pre-
dict the 2.5D sketches including normal, depth and silhou-
ette, then reconstruct the 3D shape. A reprojection consis-
tency constraint between the 3D shape and 2.5D sketches
is used to finetune the network on real images. (Zhu et al.
2017) jointly trained a pose regressor with a 3D reconstruc-
tion network so that the object images with annotated masks
yet unknown poses can be used for training. Many existing
methods have explored using pose and silhouette (or other
2D/2.5D observations) to supervise the 3D shape predic-
tion (Yan et al. 2016; Tulsiani et al. 2017b; Gwak et al. 2017;
Zhu et al. 2017; Wu et al. 2017; Tulsiani, Efros, and Malik
2018). However, our goal is to refine the 3D shape inside
of the network using an estimated visual hull, and our vi-
sual hull construction is an inverse process of their shape-to-
image projection scheme. More discussions can be found in
the supplementary material.
Generative models for 3D shape. Some efforts are devoted
to modeling the 3D shape space using generative models
such as GAN (Goodfellow et al. 2014) and VAE (Kingma
and Welling 2013). In (Wu et al. 2016), a 3D-GAN method
is proposed for learning the latent space of 3D shapes and
a 3D-VAE-GAN is also presented for mapping image space
to shape space. A fully convolutional 3D autoencoder for
learning shape representation from noisy data is proposed in
(Sharma, Grau, and Fritz 2016). A weakly-supervised GAN
for 3D reconstruction with the weak supervision from sil-
houettes can be found in (Gwak et al. 2017).
3D shape representation. Most deep object reconstruction
methods use the voxel grid representation (Choy et al. 2016;
Girdhar et al. 2016; Yan et al. 2016; Tulsiani et al. 2017b;
Zhu et al. 2017; Wu et al. 2017; 2016; Gwak et al. 2017),
i.e., the output is a voxelized occupancy map. Recently,
memory-efficient representations such as point clouds (Qi
et al. 2017), voxel octree (Häne, Tulsiani, and Malik 2017;
Tatarchenko, Dosovitskiy, and Brox 2017) and shape prim-
itives (Zou et al. 2017) are investigated. (Richter and Roth
2018) proposes a memory-efficient shape representation for
high-resolution reconstruction. Our core idea in this paper is
orthogonal to these methods.
Visual hull for deep multi-view 3D reconstruction. Some
recent works use visual hulls of color (Ji et al. 2017) or
learned feature (Kar, Häne, and Malik 2017) for multi-view



stereo with CNNs. Our method is different from theirs in
several ways. First, the motivations of using visual hulls dif-
fer: they use visual hulls as input to their multi-view stereo
matching networks in order to reconstruct the object shape,
whereas our goal is to leverage a visual hull to refine a coarse
single-view shape prediction. Second, the object poses are
given in their methods, while in ours the object pose is esti-
mated by a CNN. Related to the above, our novel visual hull
construction layer is made differentiable, and object seg-
mentation, pose estimation and 3D reconstruction are jointly
trained in one framework.

Our Approach
In this section, we detail our method which takes as input
a single image of a common object such as car, chair and
coach, and predicts its 3D shape. We assume the objects are
roughly centered (e.g. those in bounding boxes given by an
object detector).
Shape representation. We use voxel grid for shape repre-
sentation similar to previous works (Wu et al. 2015; Yan et
al. 2016; Wu et al. 2016; Zhu et al. 2017; Wu et al. 2017),
i.e., the output of our network is a voxelized occupancy map
in the 3D space. This representation is very suitable for vi-
sual hull construction and processing, and it is also possible
to extend our method to use tree-structured voxel grids for
more fine-grained details (Häne, Tulsiani, and Malik 2017;
Tatarchenko, Dosovitskiy, and Brox 2017)
Camera model. We choose the perspective camera model for
the 3D-2D projection geometry, and reconstruct the object in
a unit-length cube located in front of the camera (i.e., with
cube center near the positive Z-axis in the camera coordinate
frame). Under a perspective camera model, the relationship
between a 3D point (X,Y, Z) and its projected pixel loca-
tion (u, v) on the image is

Z[u, v, 1]T = K
(
R[X,Y, Z]T + t

)
(1)

where K =

[
f 0 u0

0 f v0

0 0 1

]
is the camera intrinsic matrix

with f being the focal length and (u0, v0) the principle point.
We assume that the principal points coincide with image
center (or otherwise given), and focal lengths are known.
Note that when the exact focal length is not available, a
rough estimate or an approximation may still suffice. When
the object is reasonably distant from the camera, one can use
a large focal length to strike a balance between perspective
and weak-perspective models.
Pose parametrization. The object pose is characterized
by a rotation matrix R ∈ SO(3) and a translation vector
t = [tX , tY , tZ ]

T ∈ R3 in Eq. 1. We parameterize rotation
simply with Euler angles θi, i = 1, 2, 3. For translation we
estimate tZ and a 2D vector [tu, tv] which centralizes the ob-
ject on image plane, and obtain t via [ tuf ∗ tZ ,

tv
f ∗ tZ , tZ ]

T.
In summary, we parameterize the pose as a 6-D vector
p = [θ1, θ2, θ3, tu, tv, tZ ]

T.

Sub-nets for Pose, Silhouette and Coarse Shape
Given a single image as input, we first apply a CNN to di-
rectly regress a 3D volumetric reconstruction similar to pre-

vious works such as (Choy et al. 2016). We call this network
the V-Net. Additionally, we apply another two CNNs for
pose estimation and segmentation, referred to as P-Net and
S-Net respectively. In the following we describe the main
structure of these sub-networks.

V-Net: The V-Net for voxel occupancy prediction consists
of a 2D encoder and a 3D decoder, as depicted in Fig. 3 (a). It
is adapted from the network structure of (Choy et al. 2016),
and the main difference is we replaced their LSTM layer
designed for multi-view reconstruction with a simple fully
connected (FC) layer. We denote the 3D voxel occupation
probability map produced by the V-Net as V .

P-Net: The P-Net for pose estimation is a simple regres-
sor outputting 6-dimensional pose vector denoted as p, as
shown in Fig. 3 (b). We construct the P-Net structure sim-
ply by appending two FC layers to the encoder structure
of V-Net, one with 512 neurons and the other with 6 neu-
rons. Since the geometric variation among different object
categories is huge and the viewpoint-appearance relation-
ships significantly differ, we follow previous works (Su et
al. 2015; Massa, Marlet, and Aubry 2016) to use category-
specific final FC layers for multiple object categories.

S-Net: The S-Net for object segmentation has a 2D
encoder-decoder structure, as shown in Fig. 3 (c). We use
the same encoder structure of V-Net for S-Net encoder, and
apply a mirrored decoder structure consisting of deconv and
uppooling layers. The S-Net generates an object probability
map of 2D pixels, which we denote as S.

PSVH Layer for Probabilistic Visual Hull
Given the estimated pose p and the object probability map
S on the image plane, we construct inside of our neural net-
work a Probabilistic Single-view Visual Hull (PSVH) in the
3D voxel grid. To achieve this, we project each voxel loca-
tion X onto the image plane by the perspective transforma-
tion in Eq. 1 to obtain its corresponding pixel x. Then we
assignH(X) = S(x), whereH denotes the generated prob-
abilistic visual hull. This process is illustrated in Fig. 3 (d).

The PSVH layer is differentiable, which means that the
gradients backpropagated to H can be backpropagated to S
and pose P , hence further to S-Net and P-Net. The gradi-
ent of H with respect to S is easy to discern: we have built
correspondences from H to S and simply copied the val-
ues. Propagating gradients to p is somewhat tricky. Accord-
ing to the chain rule, we have ∂l

∂p =
∑

X
∂l

∂H(X)
∂H(X)
∂X

∂X
∂p

where l is the network loss. Obtaining ∂l
∂p necessitates com-

puting ∂H(X)
∂X , i.e., the spatial gradients of H, which can be

numerically computed by three convolution operations with
pre-defined kernels along X-, Y- and Z-axis respectively. ∂X

∂p

can be derived analytically.

Refinement Network for Final Shape
With a coarse voxel occupancy probability V from V-Net
and the visual hull H from the PSVH layer, we use a 3D
CNN to refine V and obtain a final prediction, denoted by
V+. We refer to this refinement CNN as R-Net. The basic
structure of our R-Net is shown in Fig. 3 (e). It consists of
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Figure 3: Network structure illustration. Our network consists of (a) a coarse shape estimation subnet V-Net, (b) an object pose
estimation subnet P-Net , (c) an object segmentation subnet, (d) a probabilistic single-view visual hull (PSVH) layer, and finally
(e) a shape refinement network R-Net.

five 3D conv layers in the encoder and 14 3D conv layers in
the decoder.

A straightforward way for R-Net to process V and H is
concatenating V and H to form a 2-channel 3D voxel grid
as input then generating a new V as output. Nevertheless,
we have some domain knowledge on this specific problem.
For example, if a voxel predicted as occupied falls out of the
visual hull, it’s likely to be a false alarm; if the prediction
does not have any occupied voxel in a viewing ray of the
visual hull, some voxels may have been missed. This domain
knowledge prompted us to design the R-Net in the following
manners.

First, in addition to V andH, we feed into R-Net two more
occupancy probability maps: V � (1−H) andH� (1−V)
where� denotes element-wise product. These two probabil-
ity maps characterize voxels in V but not in H, and voxels
in H but not in V 1, respectively. Second, we add a resid-
ual connection between the input voxel prediction V and the
output of the last layer. This way, we guide R-Net to gen-
erate an effective shape deformation to refine V rather than
directly predicting a new V , as the predicted V from V-Net
is often mostly reasonable (as found in our experiments).

Network Training
We now present our training strategies, including the train-
ing pipeline for the sub-networks and their training losses.
Training pipeline. We employ a three-step network train-
ing algorithm to train the proposed network. Specifically,
we first train V-Net, S-Net and R-Net separately, with in-
put training images and their ground-truth shapes, silhou-
ettes and poses. After V-Net converges, we train R-Net in-
dependently, with the predicted voxel occupancy probability
V from V-Net and the ground-truth visual hull, which is con-
structed by ground-truth silhouettes and poses via the PSVH
layer. The goal is to let R-Net learn how to refine coarse
shape predictions with ideal, error-free visual hulls. In the
last stage, we finetune the whole network, granting the sub-
nets more opportunity to cooperate accordingly. Notably, the

1A better alternative for H � (1 − V) would be constructing
another visual hull using V and p then compute its difference from
H. We chooseH� (1− V) here for simplicity.

R-Net will adapt to input visual hulls that are subject to es-
timation error from S-Net and P-Net.
Training loss. We use the binary cross-entropy loss to train
V-Net, S-Net and R-Net. Concretely, let pn be the estimated
probability at location n in either V , S or V+, then the loss
is defined as

l = − 1

N

∑
n

(
p∗n log pn + (1− p∗n)log(1− pn)

)
(2)

where p∗n is the target probability (0 or 1). n traverses over
the 3D voxels for V-Net and R-Net, and over 2D pixels
for S-Net. The P-Net produces a 6-D pose estimate p =
[θ1, θ2, θ3, tu, tv, tZ ]

T as described before. We use the L1

regression loss to train the network:

l =
∑

i=1,2,3

α|θi−θ∗i | +
∑
j=u,v

β|tj−t∗j | + γ|tZ−t∗Z |, (3)

where we set α = 1, γ = 1 and β = 0.01, the Euler angles
are normalized into [0, 1]. We found in our experiments the
L1 loss produces better results than an L2 loss.

Experiments
Implementation details. Our network is implemented in
TensorFlow. The input image size is 128× 128 and the out-
put voxel grid size is 32×32×32. Batch size of 24 and the
ADAM solver are used throughout the training. We use a
learning rate of 1e−4 for S-Net, V-Net and R-Net and divide
it by 10 at the 20K-th and 60K-th iterations. The learning
rate for P-Net is 1e−5 and is dropped by 10 at the 60K-th
iteration. When finetuning all the subnets together the learn-
ing rate is 1e−5 and dropped by 10 at the 20K-th iteration.
Training and testing data. In this paper, we test our method
on four common object categories: car and airplane as the
representative vehicle objects, and chair and couch as furni-
ture classes. Real images that come with precise 3D shapes
are difficult to obtain, so we first resort to the CAD models
from the ShapeNet repository (Chang et al. 2015). We use
the ShapeNet object images rendered by (Choy et al. 2016)
to train and test our method. We then use the PASCAL 3D+
dataset (Xiang, Mottaghi, and Savarese 2014) to evaluate our
method on real images with pseudo ground truth shapes.
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Figure 4: Qualitative results on the test set of the rendered ShapeNet objects. The top two rows and bottom two rows show
some results on images with a clean background and real-image background, respectively. The color of the voxels indicates
the predicted probability (red/yellow for high/low probability). While the coarse shapes may miss some shape details or be
inconsistent with the image, our final shapes refined with single-view visual hulls are of high fidelity.

Table 1: The performance (shape IoU) of our method on the
test set of the rendered ShapeNet objects. H denotes visual
hull and GT indicates ground truth.

car airplane chair couch Mean
Before Refine. 0.819 0.537 0.499 0.667 0.631
After Refine. 0.839 0.631 0.552 0.698 0.680
Refine. w/oH 0.824 0.541 0.505 0.675 0.636
Refine. w. GTH 0.869 0.701 0.592 0.741 0.726
Refine. w/o 2 prob.maps 0.840 0.610 0.549 0.701 0.675
Refine. w/o end-to-end 0.822 0.593 0.542 0.677 0.658

Results on Rendered ShapeNet Objects
The numbers of 3D models for the four categories are 7,496
for car, 4,045 for airplane, 6,778 for chair and 3,173 for ta-
ble, respectively. In the rendering process of (Choy et al.
2016), the objects were normalized to fit in a radius-0.5
sphere, rotated with random azimuth and elevation angles,
and placed in front of a 50-degree FOV camera. Each object
has 24 images rendered with random poses and lighting.

Following (Choy et al. 2016), we use 80% of the 3D mod-
els for training and the rest 20% for testing. We train one
network for all the four shape categories until the network
converge. The rendered images are with clean background
(uniform colors). During training, we blend half of the train-
ing images with random crops of natural images from the
SUN database (Xiao et al. 2010). We binarize the output
voxel probability with threshold 0.4 and report Intersection-
over-Union (IoU).
Quantitative results. The performance of our method eval-
uated by IoU is shown in Table 1. It shows that the results
after refinement (i.e., our final results) are significantly bet-

Table 2: The performance (shape IoU) of our method and
PointOutNet (Fan, Su, and Guibas 2017).

car airplane chair couch Mean
(Fan, Su, and Guibas 2017) 0.831 0.601 0.544 0.708 0.671
Ours 0.839 0.631 0.552 0.698 0.680

Table 3: The performance (shape IoU) of our method on the
test set of the rendered ShapeNet objects with clean back-
ground and background from natural image crops.

Background car airplane chair couch Mean
Clean 0.839 0.631 0.552 0.698 0.680
Image crop. 0.837 0.617 0.541 0.700 0.674

Table 4: The pose estimation and segmentation quality of
our P-Net and S-Net on the rendered ShapeNet objects.
Mean values are shown for each category.

car airplane chair couch Mean
Rotation error 7.96◦ 4.72◦ 6.59◦ 10.41◦ 7.42◦

Translation error 3.33% 2.60% 3.26% 3.41% 3.15%
Silhouette IoU 0.923 0.978 0.954 0.982 0.959

ter, especially for airplane and chair where the IoUs are im-
proved by about 16% and 10%, respectively. Note that since
our V-Net is adapted from (Choy et al. 2016) as mentioned
previously, the results before refinement can be viewed as
the 3D-R2N2 method of (Choy et al. 2016) trained by us.

To better understand the performance gain from our visual
hull based refinement, we compute the IoU of the coarse
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Figure 5: Comparison of the results before and after refinement on rendered ShapeNet objects.

and refined shapes for each object from the four categories.
Figure 5 presents the comparisons, where the object IDs are
uniformly sampled and sorted by the IoUs of coarse shapes.
The efficacy of our refinement scheme can be clearly seen.
It consistently benefits the shape reconstruction for most of
the objects, despite none of them is seen before.

We further compare the numerical results with PointOut-
Net (Fan, Su, and Guibas 2017) which was also evaluated
on this rendered dataset and used the same training/testing
lists as ours. Table 1 shows that our method outperformed it
on the three of the four categories (car, airplane and chair)
and obtained a higher mean IoU over the four categories.
Note that the results of (Fan, Su, and Guibas 2017) were ob-
tained by first generating point clouds using their PointOut-
Net, then converting them to volumetric shapes and applying
another 3D CNN to refine them.

Table 3 compares the results of our method on test images
with clean background and those blended with random real
images. It shows that with random real image as background
the results are only slightly worse. Table 4 shows the quality
of the pose and silhouette estimated by P-Net and S-Net.
Qualitative results. Figure 4 presents some visual results
from our method. It can be observed that some object com-
ponents especially thin structures (e.g. the chair legs in the
second and fifth rows) are missed in the coarse shapes.
Moreover, we find that although some coarse shapes appear
quite realistic (e.g. the airplanes in the left column), they are
clearly inconsistent with the input images. By leveraging the
single-view visual hull for refinement, many shape details
can be recovered in our final results, and they appear much
more consistent with the input images.

We also compare our results qualitatively with Marr-
Net (Wu et al. 2017), another state-of-the-art single-view
3D object reconstruction method2. The authors released a
MarrNet model trained solely on the chair category of the
ShapeNet objects. Figure 6 presents the results on four chair
images, where the first/last two are relatively good results
from MarrNet/our method cherry-picked among 100 objects
on our test set. It can be seen that in both cases, our method
generated better results than MarrNet. Our predicted shapes
are more complete and consistent with the input images.

2We were not able to compare the results quantitatively: Marr-
Net directly predicts the shapes in the current camera view which
are not aligned with GT shapes; moreover, the training and testing
splits for MarrNet are not disclosed in (Wu et al. 2017).

Input
Image

MarrNet
1st view

Ours
1st view

GT
1st view

MarrNet
2nd view

Ours 
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GT
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Figure 6: Result comparison with the MarrNet method on
ShapeNet chairs (our testing split). Top two rows: cherry-
picked results of MarrNet, compared against our results.
Bottom two rows: cherry-picked results of our method, com-
pared against MarrNet results.

Table 5: The performance (shape IoU) of our method on the
test set of the PASCAL 3D+ dataset.

car airplane chair couch Mean
Before Refine. 0.625 0.647 0.341 0.633 0.552
After Refine. 0.653 0.690 0.341 0.664 0.587

Table 6: The pose estimation and segmentation quality of
P-Net and S-Net on PASCAL 3D+. Median values are re-
ported. Note that the pseudo ground-truth poses and silhou-
ettes used for evaluation are noisy.

car airplane chair couch
Rotation error 39.4◦ 25.5◦ 43.6◦ 34.0◦

Translation error 8.6% 4.4% 12.7% 12.5%
Silhouette IoU 0.757 0.614 0.457 0.696

Results on the Pascal 3D+ Dataset
We now evaluate our method on real images from the PAS-
CAL 3D+ dataset (Xiang, Mottaghi, and Savarese 2014).



This dataset only have pseudo ground-truth shapes for real
images, which makes it very challenging for our visual hull
based refinement scheme. Moreover, the provided object
poses are noisy due to the lack of accurate 3D shapes, mak-
ing it difficult to train our pose network.

To test our method on this dataset, we finetune our net-
work trained on ShapeNet objects on images in PASCAL
3D+. We simply set the focal length to be 2000 for all im-
ages since no focal length is provided. With this fixed focal
length, we recomputed the object distances using the image
keypoint annotations and the CAD models through reprojec-
tion error minimization.
Quantitative results. The quantitative results of our method
are presented in Table 5 and Table 6. As can be seen in Ta-
ble 6, the pose and silhouette estimation errors are much
higher than the results on the ShapeNet objects. Neverthe-
less, Table 5 shows that our visual hull based refinement
scheme still largely improved the coarse shape from V-Net
for the car, airplane and couch categories. Note again that
our V-Net is almost identical to the network in the 3D-
R2N2 method (Choy et al. 2016). The refinement only yields
marginal IoU increase for the chair category. We observed
that the chair category on this dataset contains large intra-
class shape variations (yet only 10 CAD shapes as pseudo
ground truth) and many instances with occlusion; see the
suppl. material for more details.
Qualitative results. Figure 7 shows some visual results of
our method on the test data. It can be seen that the coarse
shapes are noisy or contain erroneous components. For ex-
ample, possibly due to the low input image quality, the
coarse shape prediction of the car image in the second row of
the left column has a mixed car and chair structure. Never-
theless, the final results after the refinement are much better.
More results including failure cases can be found in the sup-
plementary material.

Figure 1 shows some results from both our method and
MarrNet (Wu et al. 2017). Visually inspected, our method
produces better reconstruction results again.

More Ablation Study and Performance Analysis
Performance of refinement without visual hull. In this ex-
periment, we remove the probabilistic visual hull and train
R-Net to directly process the coarse shape. As shown in Ta-
ble 1, the results are slightly better than the coarse shapes,
but lag far behind the results refined with visual hull.
Performance of refinement with GT visual hull. We also
trained R-Net with visual hulls constructed by ground-truth
poses and silhouettes. Table 1 shows that the performance
is dramatically increased: the shape IoU is increased by up
to 30% from the coarse shape for the four object categories.
The above two experiments indicate that our R-Net not only
leveraged the visual hull to refine shape, but also can work
remarkably well if given a quality visual hull.
Effect of two additional occupancy probability maps V �
(1 − H) and H � (1 − V). The results in Table 1 shows
that, if these two additional maps are removed from the input
of R-Net, the mean IoU drops slightly from 0.680 to 0.675,
indicating our explicit knowledge embedding helps.

IoU 0.738 IoU 0.710 IoU 0.724

IoU 0417 IoU 0.373 IoU 0.645

IoU 0.808 IoU 0.555 IoU 0.899

IoU 0.533 IoU 0.739 IoU 0.902

Input
Image

Estimated
Silhouette

Visual
Hull

Coarse
Shape

Refined 
Shape

Pseudo
GT

Figure 7: Qualitative results on the test set of PASCAL 3D+

Effect of end-to-end training. Table 1 also presents the
result without end-to-end training. The clear performance
drop demonstrates the necessity of our end-to-end finetun-
ing which grants the subnets the opportunity to better adapt
to each other (notably, R-Net will adapt to input visual hulls
that are subject to estimation error from S-Net and P-Net).

Running Time

For a batch of 24 input images, the forward pass of our
whole network takes 0.44 seconds on an NVIDIA Tesla M40
GPU, i.e., our network processes one image with 18 mil-
liseconds on average.

Conclusions

We have presented a novel framework for single-view 3D
object reconstruction, where we embed the perspective ge-
ometry into a deep neural network to solve the challenging
problem. Our key innovations include an in-network visual
hull construction scheme which connects the 2D space and
pose space to the 3D space, and a refinement 3D CNN which
learns shape refinement with visual hulls. The experiments
demonstrate that our method achieves very promising results
on both synthetic data and real images.
Limitations and future work. Since our method involves
pose estimation, objects with ambiguous pose (symmetric
shapes) or even do not have a well-defined pose system (ir-
regular shapes) will be challenging. For the former cases,
using a classification loss to train the pose network would
be a good remedy (Su et al. 2015), although this may render
the gradient backpropagation problematic. For the latter, one
possible solution is resorting to multi-view inputs and train
the pose network to estimate relative poses.
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