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Abstract

In this supplementary material, we provide the details of
the initialization algorithm, as well as more experimental
results compared to state-of-the-art methods on the public
benchmarks.

1. Initialization Algorithm
In this work, a simple strategy is used to generate candi-

date homography proposals and an initial labelling. We first
compute an initial motion field via PatchMatch [1], then we
use Direct Linear Transform (DLT) [3] to fit homographies
for small local regions, and grow the regions to consistent
neighbouring pixels for initial labelling. See Algorithm 3
for the details. In further we would like to test more initial-
ization strategies.

2. More Results
2.1. Results on KITTI

Figure 1 shows the quantitative results on the the
test set of the KITTI benchmark at the time of writing.
Complete results can be found at the official webpage:
http://www.cvlibs.net/datasets/kitti/
eval_stereo_flow.php?benchmark=flow.

2.2. Results on Middlebury

Figure 2 shows the quantitative method evaluation re-
sults on the the test set of the Middlebury benchmark at the
time of writing. Complete results can be found at the of-
ficial webpage: http://vision.middlebury.edu/
flow/eval/results/results-e1.php. Note that,
all the methods have sub-pixel accuracy, and a very small
difference in one sequence may lead to a large difference in
ranking.

Algorithm 3: Homography proposal generation and
initial labelling

1 Initialize a dense motion field by e.g. [1];
2 Initialize a label map with all pixels unlabelled;
3 l← 0;
4 while unlabelled pixels exist do
5 Pick out an unlabelled pixel x;
6 Fit a homography Hl with points in a small (e.g.

5× 5) window Wx centered as x;
7 Label unlabelled pixels in Wx with l and push

them into queue Q;
8 while Q is not empty do
9 Pop-out a pixel p from Q;

10 foreach q as p’s unlabelled neighbour do
11 if q’s motion fits Hl then
12 Label q with l and push it into Q;

13 l← l+1;

14 if l > Lmax (e.g., 1000) then
15 Sort the labels according to their labelling areas;
16 Set all pixels of the l − Lmax labels with smallest

areas as unlabelled, then label each of them with
its nearest label on the image.

Figure 3 compares the proposed method with method
of [2] which uses translation and similarity models ex-
tracted from nearest neighbour fields. Visually inspected,
our method yields smoother, and more accurate optical flow
estimates.

We also show in Figure 4 the overlay of the reference
frame and our optical flow estimation result on the on
“Beanbags” and “DogDance” sequences.
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2.3. Results on Sintel

Figure 5 shows the quantitative method evaluation re-
sults on the test set of the Sintel benchmark at the time of
writing. Complete results can be found at the official web-
page: http://sintel.is.tue.mpg.de/results.
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Figure 3: Qualitative comparison of [2] which uses
global translation and similarity models (images reproduced
from [2]), and our method. The flow fields shown here from
both methods are without the refinement process.
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Figure 4: Results of our method on the “BeanBags” and
“DogDance” sequences of Middlebury dataset.
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Figure 1: Method evaluation on KITTI benchmark with the default 3-pixel error threshold (captured on 21-Nov-2014). Our
method “PPR-Flow” (new name “PH-Flow” now) ranks 1st among all pure optical flow methods without stereo information
or epipolar constraint.



Figure 2: Method evaluation on Middlebury benchmark with average end-point error (captured on 21-Nov-2014). Our
method “PPR-Flow” (new name “PH-Flow” now) ranks 13rd among all the methods.



(a) Results on the “Clean” sequences. Our method “PPR-Flow” (new name “PH-Flow” now) ranks 2nd among all evaluated methods (method
“EpicFlow” [4] was unpublished at the time of writing).

(b) Results on the “Final” sequences. Our method “PPR-Flow” (new name “PH-Flow” now) ranks 7th among all evaluated methods.

Figure 5: Method evaluation on the test set of Sintel benchmark with average end-point error (captured on 21-Nov-2014).
We show 20 leading methods for the “Clean” and “Final” passes.


