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This supplementary material provides more details and
results that were not included in the main paper due to the
space limitations. The contents are organized as follows.

Section A details the procedures of human assessment in
Section 4.4 of the main paper. Section B illustrates the com-
plete overview of our newly collected unaligned dataset,
followed by more visual results of real-world images in Sec-
tion C.

A. Human Assessment on Unaligned Data
This section provides more details on how we conduct

the user study to assess the model performance before and
after finetuning with our alignment-invariant loss and un-
aligned training data. For each assessment, the user was
presented with the reference R and the reconstructed im-
ages (A and B) by compared models. The user was asked
to select the image that he/she considers more similar to the
reference, as shown in Figure I.

We adopted two strategies to ensure the validation and
reliability of this test. First, the output of a specific model
was randomly placed, such that A or B could be either the
result of the pretrained model or the finetuned version. Sec-
ond, before the regular test, we indicated each user to com-
plete a training phase. Ten standard training pairs (out of
50 testing pairs) with our predefined labels are presented in
training phase. If the user selects the option that is entirely
deviated from our label (e.g. selecting ”B is obviously bet-
ter” in Figure I), the system would require the user to recon-
sider the selection again. These labelled image pairs serve
as our predefined evaluation baseline, as shown in Figure
IV.

We quantify the human preference base on the following
rules:

I. The option selected would be accounted for 2 point, as
the finetuned result is obviously better.

II. 1 point, as the finetuned result is slightly better.

III. 0 point, as the ”can’t tell” option is selected.

Figure I: Image assessment system interface

IV. -2, -1 points for the converse situations of rules 1 and
2 respectively.

In Table 4 of the main paper, we displayed the (averaged)
human preference scores of this user study. Here, we con-
struct the corresponding 95% confidence interval as shown
in Figure II. It can be observed that the endpoints of each
confidence interval are not deviated too much from the sam-
ple mean, showing the reliability of the user study. More
visual result comparison of our ERRNet models with and
without training on unaligned data is shown in Figure III,
which extends the Figure 7 in the main paper.

B. Overview of Dataset

The complete overview of our newly collected unaligned
dataset is shown in Figure V, which extends the Figure 6 in
the main paper.

C. More Qualitative Results

More visual results on real-world images are shown in
Figure VI (3 pages). We compare our methods against state-
of-the-art methods of Li and Brown (LB14) [2], Fan et al.
(CEILNet) [1], Zhang et al. [4], and Yang et al. (BDN) [3].
This extends the Figure 5 of the main paper.
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(a) BDN-F
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Figure II: Human preference scores and their associated 95 % confidence interval (denoted by red error bar) of self-comparison experiments.

Input Reference w/o unaligned w. unaligned

Figure III: Results of ERRNet that trained with and without unaligned data.
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Image A Reference Image B

Label: A is obviously better than B

Label: B is obviously better than A

Label: A is slightly better than B

Label: Can’t tell

Label: B is obviously better than A

Figure IV: Ten standard training pairs with predefined labels
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Image A Reference Image B

Label: Can’t tell

Label: Can’t tell

Label: B is obviously better than A

Label: Can’t tell

Label: A is slightly better than B

Figure IV: (Cont.) Ten standard training pairs with predefined labels
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Figure V: Complete Overview of our unaligned dataset (DSLR part)
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Figure V: Complete Overview of our unaligned dataset (smartphone part)
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Figure VI: Qualitative comparisons on more real-world data
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Figure VI: (Cont.) Qualitative comparisons on more real-world data
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Figure VI: (Cont.) Qualitative comparisons on more real-world data


