
Accurate 3D Face Reconstruction with Weakly-Supervised Learning:
From Single Image to Image Set

(Supplementary Material)

1. Outline

In this supplementary document, we provide more de-
tails of our approach and evaluation which are omitted in
the main paper due to space limitation. We also show some
additional results from our method. The remaining structure
of this document is organized as follows:

• Section 2: More details of our face model.

• Section 3: Math derivations of our analytic image gen-
eration process.

• Section 4: More details of our training losses.

• Section 5: Details of the evaluation protocol on Face-
Warehouse dataset [2] and more comparison with [9].

• Section 6: Detailed analysis on confidence scores.

• Section 7: More visual results on in-the-wild images.

2. 3D Face Model

In this work, a cropped Basel 2009 3D face model [8] is
used throughout our experiments. As shown in Fig 1 (a/b),
we cut the mesh of Basel 2009 model along the outer bound-
ary points from 68 facial landmarks [5] to exclude ear and
neck regions. Inner mouth region is also excluded, leading
to a final mesh with 35,709 vertices.

Figure 1. (a/b) The region (blue color) we use for 3D face re-
construction. (c) The region (dark color) we use for the texture
flattening constraint.

3. Analytic Image Generation

Given a training RGB image I , we use R-Net to regress a
coefficient vector x = (α,β, δ,γ,p) ∈ R239 as described
in the main paper. After getting x, we calculate the im-
age space position ui(x), z-coordinate zi(x) (for occlusion
handling via z-buffering) and color ci(x) for each vertex si
with surface normal ni and texture ti

1:

ui(x) = Π ◦
(
R(p)si(α,β) + t(p)

)
zi(x) =

(
R(p)si(α,β) + t(p)

)
z

ci(x) = C(R(p)ni(α,β), ti(δ)|γ)

(1)

where Π denotes the full perspective projection and C(·)
is the illumination model defined in the main paper. Then,
similar to [4], we do a rasterization with ui(x) and zi(x) to
get reconstructed image I ′.

4. More Details of Our Losses

4.1. Skin Attention

In this work, we adopt a robustified photometric loss to
train the network. As descried in the main paper, the pho-
tometric error is weighted by a skin attention mask derived
from a skin probability map P for the pixels on I .

To obtain the skin probability P , we train a naive Bayes
classifier with Gaussian Mixture Models (GMMs) on a skin
image dataset from [6]. This dataset contains 4,671 human
images with skin region labeled and 8,965 natural images
without human. To obtain the likelihood functions for skin
and non-skin color, we fit GMMs onto skin and non-skin
pixels (YCbCr color space) in the training set respectively
using the Expectation Maximization algorithm. Four Gaus-
sian components are used for both. Consequently, the pos-
terior skin probability for a new pixel can be computed with
the prior probabilities and likelihood functions following

1Note the slight abuse of notation here: the vertex texture ti with sub-
script i should not be confused with t which is the translation vector; sim-
ilarly, the vertex color notation ci should not be confused with the identity
confidence vector c predicted by C-Net.
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Figure 2. Examples of the skin probability maps used in our robust
photometric loss. Note that these skin probability maps are used
only for training; they are not required in the testing stage.

Bayes rule. Figure 2 presents some examples of the resul-
tant skin color probability maps P for our training images.

4.2. Texture Flattening

As mentioned in the main paper, to favor constant skin
albedo, we add a texture flattening constrain to penalize tex-
ture map variance over a pre-defined region R: Ltex(x) =∑

c∈{r,g,b} var(Tc,R(x)). The region we use is shown in
Fig. 1 (c), which covers part of cheek, nose, and forehead.
The texture flattening loss helps to remove shading from
generated face texture. Some examples of our generated
texture are shown in Fig. 5.

5. Evaluation on FaceWarehouse
Evaluation Protocol. To conduct a fair comparison with
[9, 10, 7, 3] on the Facewarehouse dataset [2], we use
the evaluation protocal of [9]. Specifically, the topology
of reconstruction meshes is first transferred to the one de-
fined by [9], which contains 60K vertices evenly distributed
across the whole head, via non-rigid registration. The
ground truth meshes of Facewarehouse [2] is also subdi-
vided to obtain a denser topology. Then, with a point-to-
point correspondence pre-computed by [9], a 3D similar-
ity transformation is applied to align reconstructions with
ground truth. Finally, a mean closest point error is calcu-
lated as the geometry error and reported. All the numerical
results on FaceWarehouse presented in the main paper fol-
lows the same evaluation protocol on the same 9 subjects
selected by [9].

More Result Comparison. Figure 3 shows the 9 Face-
Warehouse subjects used for evaluation. Compared to [9],
our shape reconstructions are more faithful and exhibit
higher variance across different people. Besides, the recov-
ered texture from [9] seem to be over-smooth and contain
obvious shading components whereas ours better represent
the raw skin reflectance.

6. Detailed Analysis on Confidence Scores
In this section, we expand on the analysis of confidence

score statistics in the main paper (Section 6.2.1). In this
analysis, we collect one frontal and one profile face image
for each of the 53 subjects on the MICC dataset [1] and
compute their confidence vectors via C-Net. Then we cal-
culate the average relative confidence vectors for frontal and

Figure 3. Comparison with [9] (fine results) on the 9 subjects in
Facewarehouse [2]. Our shape reconstructions are more faithful
and exhibit higher variance across different people. Besides, the
recovered textures from [9] seem to be over-smooth and contain
obvious shading components, whereas ours better represent the
raw skin reflectance.

profile faces as:

cfrontal = 1
53

∑53
j=1(cj,frontal � cj,all)

cprofile = 1
53

∑53
j=1(cj,profile � cj,all)

(2)

where � denotes Hadamard division and cj,all =
cj,frontal + cj,profile. Figure 4 (left) shows the first 20
entries of cfrontal and cprofile with largest PCA energy



R² = 0.423
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Figure 4. Confidence statistics on frontal and profile images. We
show the first 20 entries with largest PCA energy (standard deriva-
tion). Left: average relative confidence scores of 53 subjects.
Right: Z-direction shape influence w.r.t. profile-to-front confi-
dence ratio. Each dot represents a coefficient vector entry. Entries
having larger influence on face depth (Z-direction) tend to get rela-
tively larger confidence scores on profile faces than on frontal ones
(linear regression R2 = 0.423).

(according to identity basis Bid). As can be seen, the con-
fidence scores for profile faces are lower on the majority of
the entries, but higher on a few entries such as the 11th and
12th ones.

We further analyze the influence of each entry d on the
face depth or Z-direction 3D face component (controlling
nose height etc.). For each of them, we compute an indica-
tor ∆Z2

d/(∆Xd ·∆Yd) defined as:

∆Z2
d/(∆Xd ·∆Yd) =

‖ Bd,z
id ‖21

‖ Bd,x
id ‖1‖ B

d,y
id ‖1

(3)

where Bid is the identity basis matrix of 3DMM, Bd,z
id de-

notes the vector formed by the Z-coordinates of the ver-
tices in the d-th basis (similarly for Bd,x

id and Bd,y
id ), and

‖ · ‖1 denotes the l1 norm. This indicator represents a ba-
sis’s influence on Z-components of a face relative to X- and
Y-components. A larger value indicates the corresponding
identity coefficient has more contribution on Z-direction de-
formation and vise versa. As shown in Fig. 4 (right), we
evaluate the correlations between profile-to-frontal confi-
dence ratio cprofiled /cfrontald and the above indicator. We
conduct linear regression and get R2 = 0.423, indicating
that coefficient entries having larger influence on face depth
(Z-direction) tend to have larger profile-to-frontal confi-
dence ratio (i.e., getting relatively larger confidence scores
on profile faces than on frontal ones). This is consistent with
our intuition and suggests that our network learns to exploit
information from different views for better reconstruction.

7. More Visual Results
7.1. Single Image Reconstruction

Here, we show more visual results of our method on in-
the-wild images. Figure 5 shows that our method achieves
high quality reconstructions across different races and ages.
Figure 6 demonstrates the robustness of our method under

challenging conditions including large occlusions, heavy
make ups, large poses, and extreme expressions.

7.2. Multi Image Aggregation

We further show more aggregation results based on im-
age sets. As shown in Figure 7, our method is able to
produce quality results for unconstrained image sets. Note
these unconstrained images may contain challenging pose,
lighting and visibility conditions. Our confidence aggrega-
tion strategy allows the network to favor high quality im-
ages and fuse the complementary information to achieve
accurate reconstruction.
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Figure 5. Results across different races and ages.

Figure 6. Results under challenging conditions such as occlusions,
large poses and extreme expressions.



Figure 7. Results on in-the-wild image sets. The leftmost bar charts shows the sorted value of confidence vector summation of each image
in the set. (Note in practice we use element-wise coefficient aggregation; to ease presentation, confidence vector summation is shown here.)
Five images sampled from a set are shown in the following five columns, with their confidence vector summations displayed in top left and
the reconstructed images shown below. The last column shows our aggregated results. Textures are simply averaged across each set.


