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Abstract. In this paper, we extend the globally optimal “rotation space
search” method [11] to essential matrix estimation in the presence of
feature mismatches or outliers. The problem is formulated as inlier-set
cardinality maximization, and solved via branch-and-bound global opti-
mization which searches the entire essential manifold formed by all essen-
tial matrices. Our main contributions include an explicit, geometrically
meaningful essential manifold parametrization using a 5D direct product
space of a solid 2D disk and a solid 3D ball, as well as efficient closed-
form bounding functions. Experiments on both synthetic data and real
images have confirmed the efficacy of our method. The method is mostly
suitable for applications where robustness and accuracy are paramount.
It can also be used as a benchmark for method evaluation.

Keywords: Essential matrix, robust estimation, global optimization,
branch-and-bound

1 Introduction

Essential matrix estimation is a basic building block for Structure from Motion
(SfM). Given two views of a rigid scene from a calibrated perspective camera, the
task is to estimate the relative pose or motion between the two views. Essential
matrix can be estimated with image point correspondences using epipolar geom-
etry. In reality, correspondence outliers are ubiquitous. For instance, natural or
man-made scenes often contain similar structures, flat (and ambiguous) regions,
repetitive patterns etc., making flawless feature matching nearly impossible.

To deal with outliers in the context of multiple-view geometry, RANSAC [7]
and its variants have played a major role. These methods, which are based
on random sampling, cannot provide an optimality guarantee, and the inlier
sets they find often vary from time to time. Moreover, in most RANSAC al-
gorithms (e.g. [8,26]), to ensure efficiency an algebraic solver (e.g. the 5-point
method [24,20]) and the 8-point method [21,10]) is often adopted to compute
tentative estimation, followed by a thresholding stage using geometric repro-
jection error or Sampson error. The apparent inconsistency here, i.e. algebraic
solver versus geometric threshold, can lead to inferior estimate.



2 Jiaolong Yang, Hongdong Li, Yunde Jia

In contrast, this work seeks a consistent, and globally optimal solution to
essential matrix estimation, based on meaningful geometric error. By optimal,
we adopt the consensus set maximization idea of RANSAC, i.e. to find the
maximal-sized inlier set that is compatible with the input image measurements.
To distinguish inliers from outliers, we use angular reprojection error. With a
calibrated camera, it is natural to use angular reprojection error, because a
calibrated camera behaves just like an angle measurement device, and every
image point (represented by a unit vector) gives the actual viewing angle.

To achieve globally maximal inlier-set, a naive way would be exhaustively
enumerating all possible combinations of inliers/outliers. However, this soon be-
comes intractable as combinations grow exponentially with point number. No
efficient solver to this combinational problem exists to our knowledge. Our idea
in this paper is: rather than searching over all discrete combinations of inliers,
we search the entire continuous parameter space of essential matrix. To this end,
it is necessary to find a suitable domain representation (parametrization) of the
space, with which the bounds can be easily derived and efficiently evaluated.

The proposed method is based on systematically searching two (reduced)
rotation spaces using branch-and-bound (BnB). It is inspired by the rotation
search technique proposed in [11], which has been used in several vision prob-
lems [13,1,31]. To minimize the L∞-norm of angular errors, [11] uses BnB to
recursively search SO(3) with elegant bounding. However, L∞-optimization is
known to be extremely vulnerable to outliers, and [11] assumes outlier-free cor-
respondences. Contrastly, our method works in the presence of outliers.

1.1 Related work

Our method is closely related to [11], and extends [11] to optimal inlier-set max-
imization which is non-trivial. A key insight for [11] to applying rotation search
to essential matrix estimation is that, given rotation, the translation can be opti-
mally solved with convex optimization (SOCP/LP). Contrastly, optimally solv-
ing the translation maximizing inlier-set cardinality is not trivial. The optimal
essential matrix problem considered in this paper is more challenging. Method of
[1] achieves inlier-set maximization with rotation search, however translation is
assumed to be known. In this paper, we optimally solve the problem by searching
the essential manifold with BnB, based on a novel parametrization scheme.

There have been some research efforts devoted to optimal essential matrix es-
timation with inlier-set maximization criterion [5,6]. Most closely related to our
method is [5] in which a brute-force search method is proposed using triangu-
lation feasibility test. The solution is exhaustively searched over the discretized
parameter space formed by two unit spheres, and GPU implementation is used to
speed up the computation. In [6], double pairs of correspondences are used, from
which camera pose is found by searching the two epipoles via BnB. An approxi-
mation is made to solve an otherwise NP-hard problem (minimum vertex cover),
which compromises the global optimality guarantee. The closed-form bounding
functions we use in this paper are inspired by [5] (with necessary extension);
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we however introduce other innovations in both parametrization scheme and
optimization technique. By our method, an exact optimality can be achieved.

Some approaches use branch-and-bound methods for finding globally optimal
fundamental matrix [19,32]. In particular, inlier-set is optimally maximized in
[19] with algebraic error. Geometrically meaningful error is investigated in [32],
but the goal is optimal error minimization assuming no outlier. These works
discuss uncalibrated cases only, where the underlying Euclidean constraints of
essential matrix are not exploited.

Another line of related work is outlier removal using convex optimization
[28,16,18,25]. These methods are able to detect potential outliers with respect to
a given threshold. However, the goal is not inlier-set maximization and outliers
may be removed at the expense of losing some true inliers. Moreover, in SfM they
assume known rotation to formulate the problem to be (quasi-)convex. Our work
is also related to the study of SfM without pre-built correspondences [4,23], in a
sense that we all compute the motion yielding most agreeable correspondences.

2 Essential Manifold Parametrization

A rigid motion comprises rotation and translation. As such, an essential matrix
E relates to a 3D rotation R̂ ∈ SO(3) and a 3D translation t̂ ∈ R3 from the
first camera to the second one by E = [ t̂ ]×R̂ where [ · ]× denotes the skew-
symmetric matrix representation. Essential matrix can only be determined up
to an unknown scale. To resolve this scale indeterminacy one can set the length
of t̂, i.e. ‖t̂‖ to be fixed (e.g. to be 1). Therefore, we have t̂ ∈ S2, i.e. a 2-sphere
embedded in R3. In this way the essential manifold can be parameterized with
5 degrees of freedom (dofs) in SO(3) × S2. In this paper we advocate different
coordinate system and parametrization scheme to facilitate our BnB algorithm.

In solving the relative pose problem, one has the freedom to arbitrarily choose
a coordinate system as the world frame. Different from a common practice which
sets the first camera matrix to be [I | 0], we fix the first camera’s center at the
origin, i.e. C ≡ 0, and fix the second camera’s center at C′ ≡ [0, 0, 1]T on the
Z-axis.1 We use R to denote the absolute orientation of the first camera (relative
to the world frame), and R′ for the second camera. Then, it is easy to see that,
under this configuration the essential matrix can be written as

E = [−R′C′]×R′RT = R′[−C′]×RT = R′

 0 1 0
−1 0 0
0 0 0

RT. (1)

Using two absolute rotations (R,R′) ∈ SO(3)× SO(3) to represent essential
matrix is clearly an over-parametrization, because the essential manifold has
only five dofs. The excess one dof can further be removed, as we will show next.

1 Note that, the second camera’s center can be set on either X-, Y-, or Z-axis; the
resultant parametrization using X- or Y-axis can be similarly derived. We opt for
Z-axis for the convenience of closed-form bounding function evaluation (cf. Sec. 4.3).
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Fig. 1. The essential manifold is parameterized as the product space of a solid 2D disk
D2
π and a solid 3D ball B3

π, corresponding to rotations of the first and second camera
respectively. (Note that the disk is thickened to aid in visualization)

Observe that, under our special camera setup, any rotation about Z-axis
(i.e. the axis joining the two camera centers) applied to both cameras will leave
the essential matrix invariant. In other words, they form an equivalence class
which is a member of the 2D rotation group SO(2). In order to “factor out”
these Z-axis rotations, we apply group quotient operator to one of the two SO(3)
groups as SO(3)/SO(2). In this way we can represent the essential space as
SO(3) ×

(
SO(3)/SO(2)

)
, i.e. the product space of SO(3) – rotation space for

one camera, and SO(3)/SO(2) for the other camera. Note that there are still
equivalence classes remaining, and each of them corresponds to four relative pose
configurations [12,30]. It is necessary to leave these equivalence classes there, as
only one (unknown) configuration out of the four depicts the true relative pose.

We adopt the angle-axis representation for 3D rotations, with which any
rotation is representable as a point in a solid radius-π ball in 3-space, i.e. B3

π.
Thus SO(3) can be parameterized as B3

π. The remaining problem is how to
parameterize SO(3)/SO(2). It is known in topology [17] that SO(3)/SO(2) is
homeomorphic to S2. Instead of this, we directly parameterize SO(3)/SO(2)
using angle-axis representation of camera rotation, as detailed in the following.

With angle-axis representation, it is easy to verify that, in our setup the
X-Y plane of B3

π effectively encodes all “Z-axis-free” rotations we need. This is
because the X-Y plane of B3

π contains all rotations whose Z-axis components
are zero, while X-axis and Z-axis components are arbitrary. Concretely, let v be
the angle-axis vector of R, i.e. R = exp([ v ]×), we avoid the freedom of Z-axis
rotation by setting v3, the 3rd element of vector v, to be 0. Thus our search
space for the first rotation R = exp([v1, v2, 0]×) is reduced to the 2D disk D2

π on
the equator plane of the π-ball. Now, we have “squeezed” a 3D radius-π ball to
a flat 2D radius-π disk in the X-Y plane.

Without loss of generality, we assume the first camera’s rotation R is of 2-
dof and “Z-axis free”; we denote this as v ∈ D2

π. Let R′ = exp([ v′ ]×), then the
essential manifold is parameterized by 5D vectors (v,v′) ∈ D2

π × B3
π. To recover

a 3×3 essential matrix E from (v,v′), one simply needs to recover rotations
matrices (R,R′) from (v,v′), then compute E with Eq. (1).

Comparison to previous work. Some previous works such as [14,29] base their
parametrization on Singular Value Decomposition (SVD) of essential matrix.
Although these representations also originate from SO(3)× SO(3), they do not
provide the geometric interpretation of their parameters, and are not suitable
for our BnB search. Very recently, an independent work [30] chooses the same
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coordinate system as ours and uses the essential matrix formulation in Eq. (1).
One difference between [30] and our work is that, [30] computes geodesic distance
between two equivalence classes of two 6D SO(3)×SO(3) elements, while we
propose an explicit parametrization of the 5D manifold SO(3)×

(
SO(3)/SO(2)

)
.

3 Optimization Criteria

With the parametrization described above, we are ready to formally define the
optimality, and formulate the problem we will solve.

Let (x,x′) be a putative feature correspondence pair represented as unit 3D
vectors, both corresponding to an unknown 3D scene point X ∈ R3. Note (x,x′)
may be subject to outliers and measurement noise. We represent the two cameras
by their absolute orientations R and R′, which jointly encode the essential matrix
E = E(R,R′). The epipolar equation x′TEx = 0 gives an algebraic error metric
for measuring the optimality of an essential matrix. In this work, we will use the
geometrically meaningful angular reprojection error, which is defined as

](RTx,R′Tx′)
.
= min

X
max

(
∠(RTx,X),∠(R′Tx′,X−C′)

)
= min

X
max

(
∠(x,RX),∠(x′,R′(X−C′))

) (2)

where ∠(· , ·) denotes the angle between two vectors, and C′ ≡ [0, 0, 1]T. We
use the symbol ](· , ·) to denote the angular reprojection error, which is the
maximum of the two angular residuals.

With this angular error definition, there are two options to define the opti-
mality of essential matrix E(R,R′), corresponding to the following two problems.

Problem 1 (Inlier-set cardinality maximization). Given feature correspondences
(xi,x

′
i) and a prescribed angular error tolerance ε, the optimal essential matrix

E(R,R′) maximizes the cardinality of the inlier set (or consensus set) as

max
R,R′
|I| , s.t. ∀i ∈ I, ](RTxi,R

′Tx′i) ≤ ε (3)

where I denotes the inlier set and | · | represents cardinality. A pair of correspon-
dences (xi,x

′
i) is considered to be an inlier w.r.t. ε if ](RTxi,R

′Tx′i) ≤ ε.

Problem 2 (Angular reprojection error minimization). Given feature correspon-
dences (xi,x

′
i), the optimal essential matrix E(R,R′) is found by

min
R,R′
‖e‖, s.t. ei = ](RTxi,R

′Tx′i) (4)

where ‖ · ‖ is a certain norm.

Solving Problem 2 gives rise to an exact essential matrix minimizing angular
error; however the result is sensitive to outliers. The goal of this paper is to opti-
mally solve Problem 1 with an exact inlier-set cardinality, thus it is intrinsically
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robust. Note that the solution to Problem 1 may not be unique. To solve es-
sential matrix both robustly and exactly, one can solve Problem 2 with existing
methods (e.g. [11]) after obtaining the true inliers with the proposed method.

Although global optimization for Problem 2 is studied in [11], solving the
cardinality maximization problem globally optimally is still extremely difficult
due to its obvious combinatorial and discrete nature. In this paper, we approach
the problem as a continuous optimization, and solve it by BnB search over the
continuous parameter domain – the 5D product space D2

π × B3
π.

4 Branch and Bound over D2
π × B3

π

Recall that the goal is to globally maximize the inlier-cardinality as shown in
Eq. (3). We treat this problem as continuous optimization, and solve it via 5D
space BnB. A high level description of our method is given below. For the ease
of manipulation, we use a 5D cube C5

π with half side-length π to enclose the
space of D2

π × B3
π. The initial cube C5

π can be divided into smaller cubes. For
each such cube, we compute the lower-bound (LB) as well as the upper-bound
(UB) of the inlier-set cardinality for all rotations within it. LB and UB will be
compared with the best value found so far, then this cube will be discarded or
sub-divided. In the following we will denote a cube by Cσ(R̄, R̄′), where σ is
its half side-length, and R̄, R̄′ are the center rotations of the corresponding 2D
square and 3D cube respectively.

As is true for any BnB algorithm, the key to success is to find effective and
efficient bounds. Below we will explain how we achieve this.

4.1 Lower-bound computation

Finding a lower-bound for the cardinality maximization problem is relatively
easy. It can be done simply by evaluating the cardinality function at a single
point within the cubical domain. Obviously, the cardinality obtained in this way
is necessarily a lower-bound, as it must not be greater than the true maximal
cardinality with rotation in that cube.

The following algorithm computes a lower-bound for a cube Cσ(R̄, R̄′) w.r.t.
a prescribed angular error tolerance ε.
1. Check all candidate correspondences (xi,x

′
i), with center rotations R̄, R̄′.

2. Count how many feasibility inequalities ∠(RTxi,Xi) ≤ ε and ∠(R′Tx′i,Xi−
C′) ≤ ε can be satisfied with some Xi.

3. Report the above count as a lower-bound for this cube.
Step 2 of the algorithm is done by solving a series of feasibility test problems.
How to perform such tests will be explained in Sec. 4.3.

4.2 Upper-bound computation via relaxation

In solving maximization (as opposed to minimization) with BnB, it is in general
more difficult to find a proper upper-bound (than to find a lower-bound).
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The following algorithm gives our solution to finding suitable upper-bound
of the cardinality function for a given cube Cσ(R̄, R̄′) and tolerance ε.
1. Check all correspondences (xi,x

′
i) with center rotations R̄, R̄′.

2. Count how many relaxed feasibility inequalities ∠(R̄Txi,Xi) ≤ ε+
√

2σ and
∠(R̄′Tx′i,Xi −C′) ≤ ε+

√
3σ can be satisfied with some Xi.

3. Report the above count as an upper-bound for this cube.
Note in Step 2 of this algorithm, we solve a relaxed feasibility test problem, as
the thresholds in the right side of the inequalities have been enlarged (relaxed),
leading to more correspondences to be claimed as inliers, hence increasing the
inlier cardinality.

To show that the upper-bound is valid (i.e. no solution in the cube yields
larger inlier-set cardinality), a lemma and its proof are given below.

Lemma 1. For a 5D cubic domain Cσ(R̄, R̄′), solving the above relaxed feasi-
bility problem gives a valid upper-bound of the inlier-set cardinality.

Proof. Our proof follows from two lemmas of paper [11], which show that, for
any vector x ∈ R3, given two arbitrary rotations R, R̄ (with v and v̄ as their
angle-axis representations), one must have ∠(Rx, R̄x) ≤ ∠(R, R̄) ≤ ‖v − v̄‖.

Let’s first fix R′, and consider a 2D square domain of R centered at R̄ with
half side-length σ. Suppose R∗ is the optimal rotation, among all rotations within
this domain, such that the corresponding inlier-set I is maximized. Therefore
R∗ must be feasible for inlier points, i.e. ∀i ∈ I one has ](R∗Txi,R

′Tx′i) ≤ ε⇒
∠(R∗Txi,Xi) ≤ ε with some Xi. Then for the center rotation R̄ we have

∠(R̄Txi,Xi) ≤ ∠(R∗Txi,Xi) + ∠(R̄Txi,R
∗Txi)

≤ ε+ ∠(R̄,R∗)

≤ ε+ ‖v̄ − v∗‖

≤ ε+
√

2σ.

(5)

This result implies that, if we relax the right side of the feasibility inequality
from ε to ε+

√
2σ and evaluate inlier cardinality with respect to the center rota-

tion, then the obtained cardinality will be no less than the optimal cardinality
obtained within this cube, i.e. the one corresponding to R∗.

For the other rotation R′ (which is a 3-dof rotation) and vector v′, a similar
result can be obtained, except that in this case one has

√
3σ for a 3D cubic

domain instead of
√

2σ. Combining both rotations we have: for each point i in
the optimal inlier-set with rotations in Cσ(R̄, R̄′), both ∠(R̄Txi,Xi) ≤ ε+

√
2σ

and ∠(R̄′Tx′i,Xi−C′) ≤ ε+
√

3σ must be satisfied with some Xi. This completes
the proof and the upper-bound is valid.

4.3 Efficient bounding with closed-form feasibility test

Solving upper-bound and lower-bound necessitates the feasibility test task. This
task is: given a pair of camera rotations R,R′ (along with C ≡ 0,C′ ≡ [0, 0, 1]T),
test whether or not a correspondences pair (x,x′) is an inlier w.r.t. the given
angular reprojection error threshold ε. It can be formally formulated as
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Problem 3 (Feasibility test for determining inliers).

Given x,x′,R,R′,C,C′, ε, ε′

does there exist X
such that ∠(RTx,X−C) ≤ ε
and ∠(R′Tx′,X−C′) ≤ ε′

where ε = ε′ = ε for the feasibility test in lower-bound computation, and ε =
ε+
√

2σ, ε′ = ε+
√

3σ for the relaxed one in upper-bound computation.
One way to do such a test is by two-view triangulation. It has been shown

in [16,15] that this problem can be solved by Second Order Cone Programming
(SOCP). We have tested this method experimentally using a commercial SOCP
solver (MOSEK). It worked successfully on very small numbers of feature points
but with high computational demand, preventing us from doing larger experi-
ment. We were therefore motivated to seek a faster solution.

In this paper, built upon previous work [5], our bounds are derived with
efficient feasibility test in closed-form. The intuition is: to verify whether or not
(x,x′) is compatible with a tentatively given essential matrix, one does not have
to recover the corresponding 3D point X. Instead, it is sufficient to check whether
or not the epipolar relationship of the two points is satisfied. A similar idea was
proposed in [11], where a Linear Programming solver is used for feasibility tests.

Our method avoids using convex programming. It is a direct application of
the following theorem which is a simple extension of that in [5]. Recall that, the
first camera is centered the origin and the second one is on Z-axis. If we represent
the unit vectors RTx and R′Tx′ in spherical coordinates, they become

RTx =

sin θ cosϕ
sin θ sinϕ

cos θ

, R′Tx′ =

sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′

. (6)

Theorem 1. Given a pair of correspondences x,x′, rotation matrices R,R′ and
camera centers C ≡ 0,C′ ≡ [0, 0, 1]T, representing RTx and R′Tx′ in spherical
coordinates as (θ, ϕ) and (θ′, ϕ′), we have: Problem 3 is feasible if and only if{
θ ≤ θ′+ε+ε′

|ϕ− ϕ′| ≤ ω , where ω is given below

ω =


arcsin( sin ε

sin θ ) + arcsin( sin ε′

sin θ′ ), if θ < θ′

arccos( cos(ε+ε′)−cos θ cos θ′
sin θ sin θ′ ), if θ ∈ [θ′, θ′+ε+ε′]

π, if any of the above is undefined

. (7)

Proof of this theorem can be found in [5]. The geometric intuition behind The-
orem 1 is easy to discern. Consider the limit case when ε→ 0 and ε′ → 0 (thus
ω → 0), then |ϕ − ϕ′| ≤ ω ⇒ ϕ = ϕ′ says that the two viewing rays of the two
points lie in the same half-plane containing the baseline, and θ < θ′+ε+ε′ ⇒
θ < θ′ entails that the two viewing rays intersect in this half-plane.

Based on this theorem, both lower-bound and upper-bound for a cube can
be made in closed-form. The evaluation is efficient with elementary computation
(and counting), using basic trigonometric functions.
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Algorithm 1: BnB search in D2
π × B3

π for optimal essential matrix maxi-
mizing the inlier set

Input: Images point pairs (xi,x
′
i), i = 1, . . . ,M ; angular error threshold ε.

Output: Optimal essential matrix E∗ and corresponding inlier set I∗ of size N∗.
1 Divide [−π, π]5 into small sub-cubes and push them into priority queue Q.
2 Set N∗= 4. %we need to find at least N∗= 5 points
3 begin
4 Read out a cube with the highest upper-bound UB from Q.
5 Quit the loop if UB = N∗.
6 Divide it into 25 = 32 sub-cubes with equal side length.
7 foreach sub-cube Cσ(R̄, R̄′) do
8 Set its lower-bound LB and upper-bound UB to be 0.
9 foreach correspondence pair (xi,x

′
i) do

10 LB++, if Problem 3 is feasible with R̄, R̄′, ε, ε.

11 UB++, if Problem 3 is feasible with R̄, R̄′, ε+
√

2σ, ε+
√

3σ.

12 end
13 if LB > N∗ then
14 Update N∗= LB , E∗= E(R̄, R̄′) and also I∗.
15 end
16 Discard this cube if UB 6 N∗; otherwise put it into Q.

17 end

18 end

Degeneracy. Note that when a feature point (θ, ϕ) either falls on Z-axis or is
sufficiently close to it (θ < ε or θ < ε′), the above functions for ω are not defined.
In such cases the feasibility test always returns true.

4.4 The main algorithm

Armed with the above developments of domain parametrization, lower and upper
bounds, and closed-form feasibility test, we are now ready to present our main
algorithm. Although it appears to be a bit technically heavy, the central idea
and the implementation are rather simple: for each parameter domain, i.e. a
5D cube, count the number of feature correspondences that pass the feasibility
test (or, relaxed feasibility test) as the lower-bound (or, upper-bound) of the
cardinality, and try to update the solution and discard this cube accordingly.
Algorithm 1 summarizes the algorithm in pseudo-code form.

Initial cubes. Before the BnB loop we divide the initial cube [−π, π]5 into smaller
cubes as it is less likely that a large cube can be discarded. In our implementation
we use 65 =7776 initial cubes with equal side length.

Search strategy. The BnB algorithm uses the best-first-search strategy. Con-
cretely, it maintains a priority queue of the active cubes, whose priorities are set
to be their upper-bounds. In this way, the BnB algorithm always explores the
most promising cube first.
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Fig. 2. Average rotation and translation error (both in degrees) for 50 runs of our
method in synthetic wide-FOV (left) and narrow-FOV (right) tests w.r.t. different
outlier ratios and total points.
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Fig. 3. Running time (in seconds) for 50 runs of our method in synthetic wide-FOV
(left) and narrow-FOV (right) tests w.r.t. different outlier ratios and total points.

Proof of convergence. The convergence of the algorithm is easy to see, as when
the side-lengths of all cubes asymptotically diminish to zero, the gap between
the upper-bound and lower-bound will be zero too.

5 Experiment Results

In this section, we report the experimental results on synthetic scenes and real
imageries. Our method is implemented in C++, and tested on a standard PC
with Intel i7 3.4GHz 4-core CPU and 8GB memory.

5.1 Synthetic scene test: normal cases

The main goal of experiments on synthetic data is to verify the correctness of
the proposed method, including the essential manifold parametrization and the
BnB algorithm. In these experiments we set the angular error threshold to be
0.002 radians (about 0.115 degrees). Inlier number is the main index for essential
matrix evaluation as our goal is to optimally maximize it. Nevertheless, we will
also report the estimation error of essential matrix. For better comprehension,
we use classic parametrization E = [ t̂ ]×R̂, and evaluate error of R̂ and t̂. Ro-
tation error is the angle between R̂ and ground truth rotation. As t̂ is obtained
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Fig. 4. Typical cube and bound evolutions of BnB in synthetic wide-FOV (left) and
narrow-FOV (right) tests using 50 points with 20% (i.e. 10) outliers.

up to a scale, we define translation error as the angle between t̂ and ground
truth translation. Note that, as discussed in Sec. 3, these results can be further
improved by minimizing the reprojection error of obtained inliers (which is not
used here).

Wide Field-Of-View (Omnidirectional Camera). In this test synthetic data with
random points and two omnidirectional cameras which have 360◦ field of view
were used. We synthesized 50 configurations of different points and camera poses.
The points were generated in a cube centered at origin with side length 4, and
camera centers were generated from Gaussian distribution centered at origin
with σ = 0.5. Gaussian noise with σ = 0.001 was added to all the projected
image points. To generate outliers, we randomly perturbed the image points in
the first camera by over 10 degrees. We tested our method first on different
numbers of outliers with fixed total points (50), and then on different numbers
of points with fixed outlier ratio (10%). As expected, our method succeeded in
all the tests in terms of finding out all the true inliers. Average rotation and
translation errors of the 50 configurations are shown in Fig. 2. Clearly, the error
increases with outlier ratio, and decreases with total point number. Average
running time is shown in Fig. 3. In general, it took the method longer time to
converge when higher levels of outliers were present. To visualize the behavior
of BnB, we present typical evolution curves of active cubes and global bounds
as a function of time in Fig. 4.

Narrow Field-Of-View. We then tested our method with narrow field of view.
We synthesized the situation where the points are confined in approximately
60◦ FOV of two regular pinhole cameras. The points were generated in a cube
centered at origin with side length 4, and cameras were randomly placed at a
distance of about 4 facing the origin. Other settings were the same with that in
wide-FOV tests. Again, our method successfully found out all the true inliers.
The estimation error, running time, and typical BnB evolution are also shown
in Fig. 2, Fig. 3 and Fig. 4 respectively. It is clear that solving the problem with
narrow-FOV is generally more difficult than that with wide-FOV, as evidenced
by the larger rotation and translation errors as well as the longer running time
of our method.
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5.2 Synthetic scene test: special cases

We tested some special cases on wide FOV configuration, aiming to test the
performance of the proposed method under special or extreme situations.

Large outlier ratio. To test the performance under large outlier ratio, we gen-
erated 50 points with 25 (50%), 30 (60%), 35 (70%) outliers respectively in the
wide FOV configuration. Our method successfully found the true inliers in 11s,
26s and 81s respectively.

Pure translational motion. In this experiment, two cameras with pure (and ran-
dom) translation as the ground-truth transformation and 50 points were syn-
thesized. We ran our method on these points, and the angle between the two
estimated rotations R and R′ is about 0.11 degrees, which indicates that our
method successfully identified the equal rotation case.

All scene points on a plane. We synthesized a planar case where all 50 points
lie on a plane. This is a well-known degenerate case for fundamental matrix
estimation, however it should not affect essential matrix estimation, as explained
in [24]. Our experiment on this case obtained positive result and we successfully
recovered the correct essential matrices with and without outliers. The rotation
and translation errors are all below 0.15 degrees.

5.3 Real image test

Images from both narrow-FOV and wide-FOV cameras were then used to eval-
uate the real-life performance of our method. We also tested RANSAC and LO-
RANSAC [2] (with Option 4 of local optimization described in [2]) methods. In
both RANSAC implementations, the 8-point method2 was used and angular er-
ror threshold is adopted to distinguish outliers; the outlier ratio and probability
parameter η were set to be 30% and 0.99 respectively. Note that, the goal of this
paper is not to replace the popular RANSAC and its variants in essential matrix
estimation, but to provide a complementary (yet important) optimal method.

Narrow Field-Of-View. We tested our method on two image pairs from the
Corridor and Valbonne data sets3. 94 and 106 SIFT matches [22] were generated
respectively for the two pairs as shown in Fig. 5. The angular error threshold was
set to 0.0015 radians. We parallelized the BnB search with 8 threads, and our
method converged in 221s and 453s respectively. Apparently, it takes quite more
time than on synthetic data of the same size. However, this is reasonable as will
be analyzed as follows. On a 600×600 image from a 60◦-FOV camera, a small
pixel difference, say 3 pixels, yields about 0.3-degree angle difference. To tell
outliers from inliers at this accuracy of both camera orientations, the 5D cube
would have to be divided into ( 180

0.3/
√
2
)2×( 180

0.3/
√
3
)3 ≈ 8×1014 blocks for a complete

search method, and this is also a very difficult task for our BnB. The number

2 The 5-point method (with [9]’s solver) was also tested. It performed comparably
with or slightly worse than the 8-point method; the latter one is thus presented.

3 http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
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Table 1. Inlier-set maximization performance of different methods. The first column
lists the images and correspondence numbers. The second and third columns show the
maximal and mean inlier number detected by RANSAC and LO-RANSAC in their
1,000 runs. The last column shows the inlier number from our method and the running
time (with 8 threads).

Images (#points)
RANSAC LO-RANSAC Our method

max/mean #inliers max/mean #inliers #inliers (time)

Corridor (94) 63 / 32.5 65 / 50.0 66 (221s)

Church (106) 82 / 32.8 87 / 35.5 89 (453s)

Building (202) 160 / 146.9 161 / 151.7 163 (52s)

Office (151) 124 / 91.4 126 / 104.2 126 (43s)

of detected inliers is 66 for Corridor image and 89 for Church image, indicating
29.8% and 16% outlier ratios respectively. The detected inliers and outliers are
shown in Fig. 5. For some outliers we show their angular errors (optimally solved
via bi-section and SOCP [15]) with the obtained essential matrix.

We then repeated both RANSAC and LO-RANSAC 1,000 times with the
same angular error threshold; the resulting inlier numbers are shown in the first
two columns of Tab. 1. The heuristic and stochastic nature of random sampling
scheme can be clearly seen, as the mean performances of the 1,000 runs are not
satisfactory. Moreover, both the two methods failed to detect the same inlier
number as ours. This can be explained by the fact that algebraic solution of
essential matrix is not consistent with the meaningful geometric error metric.
In future we plan to compare our method with RANSAC methods in high-noise
situation where algebraic solutions can be severely biased.

Wide Field-Of-View (Fisheye Camera). In order to test our method in real-life
wide-FOV case, a camera with a fisheye lens was used to capture images of the
scene with up to 190◦ FOV. The camera was calibrated with the method of [27].

Fig. 6 shows two typical pairs referred as Building and Office. The angular
threshold was set to be 0.003 radians for these images. Our method converged
in 52s and 43s for the two image pairs respectively as shown in Tab. 1, and the
results indicate 19.3% and 16.6% outlier ratios. In general, the angular errors of
outliers are larger than that in the narrow-FOV case (see Fig. 6), and our method
ran faster on wide-FOV images. This result is in consistent with our synthetic
experiments and similar discoveries reported in previous works [3,11,6,13].

6 Conclusion and Future Work

A branch-and-bound global optimization method is proposed for essential ma-
trix estimation via inlier-set cardinality maximization under geometric (angular)
error. An explicit and geometrically meaningful parametrization of the 5D essen-
tial manifold, i.e. D2

π×B3
π, is used to perform the BnB search. Based on previous

works [11] and [5], closed-form bounding functions of inlier-set cardinality are
derived, leading to efficient bound evaluation in the 5D space BnB.
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Fig. 5. Results on narrow-FOV images. Green and red dots are respectively inlier and
outlier correspondences found by our method. For outliers we labeled their angular
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Fig. 6. Results on wide-FOV images taken with a fisheye camera. See caption of Fig. 5.

Currently the proposed method is slow especially for cameras with small
field of view. Nevertheless, due to its optimality the method can be used as a
benchmark for method evaluation, or be applied in situations where robustness
or accuracy is highly desired while speed is not crucial.

To make the method faster and more practical, there are some strategies we
would like to investigate in future. For example, a possible one is to get an initial
essential matrix estimate using RANSAC, then search the parameter space with
the proposed BnB in a small region around this estimate. Taking advantage
of prior knowledge on motion to confine the parameter space is a metric of
continues optimization in contrast to discrete combinatorial optimization. Since
our BnB algorithm can be easily parallelized, another idea would be porting it
onto modern GPU where a significant speedup can be expected.
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